Department of Physics, University of California at Berkeley, Berkeley, CA, USA.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Nature. 2022 Sep;609(7925):52-57. doi: 10.1038/s41586-022-04991-9. Epub 2022 Aug 31.
Moiré patterns of transition metal dichalcogenide heterobilayers have proved to be an ideal platform on which to host unusual correlated electronic phases, emerging magnetism and correlated exciton physics. Whereas the existence of new moiré excitonic states is established through optical measurements, the microscopic nature of these states is still poorly understood, often relying on empirically fit models. Here, combining large-scale first-principles GW (where G and W denote the one-particle Green's function and the screened Coulomb interaction, respectively) plus Bethe-Salpeter calculations and micro-reflection spectroscopy, we identify the nature of the exciton resonances in WSe/WS moiré superlattices, discovering a rich set of moiré excitons that cannot be captured by prevailing continuum models. Our calculations show moiré excitons with distinct characters, including modulated Wannier excitons and previously unidentified intralayer charge-transfer excitons. Signatures of these distinct excitonic characters are confirmed experimentally by the unique carrier-density and magnetic-field dependences of different moiré exciton resonances. Our study highlights the highly non-trivial exciton states that can emerge in transition metal dichalcogenide moiré superlattices, and suggests new ways of tuning many-body physics in moiré systems by engineering excited-states with specific spatial characters.
过渡金属二卤族化合物异质双层的摩尔纹模式已被证明是一个理想的平台,可以承载不寻常的关联电子相、新兴的磁性和关联激子物理。虽然通过光学测量已经证实了新的摩尔纹激子态的存在,但这些态的微观性质仍然理解得很差,通常依赖于经验拟合模型。在这里,我们通过大规模第一性原理 GW(其中 G 和 W 分别表示单粒子格林函数和屏蔽库仑相互作用)加上 Bethe-Salpeter 计算和微反射光谱,确定了 WSe/WS 摩尔超晶格中激子共振的性质,发现了一组丰富的摩尔激子,这些激子不能用现有的连续体模型来捕捉。我们的计算表明,摩尔激子具有不同的特征,包括调制的 Wannier 激子和以前未识别的层内电荷转移激子。这些不同激子特征的特征通过不同摩尔激子共振的独特载流子密度和磁场依赖性在实验上得到了证实。我们的研究强调了在过渡金属二卤族化合物摩尔超晶格中可能出现的高度非平凡激子态,并提出了通过工程具有特定空间特征的激发态来调整摩尔系统中的多体物理的新方法。