Department of Molecular Genetics, Seed Development, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland, 06466, Germany.
Institute of Biology I, RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany.
Plant J. 2024 Oct;120(2):748-768. doi: 10.1111/tpj.17018. Epub 2024 Sep 11.
Flooding impairs plant growth through oxygen deprivation, which activates plant survival and acclimation responses. Transcriptional responses to low oxygen are generally associated with the activation of group VII ETHYLENE-RESPONSE FACTOR (ERFVII) transcription factors. However, the exact mechanisms and molecular components by which ERFVII factors initiate gene expression are not fully elucidated. Here, we show that the ERFVII factors RELATED TO APETALA 2.2 (RAP2.2) and RAP2.12 cooperate with the Mediator complex subunit AtMED25 to coordinate gene expression under hypoxia in Arabidopsis thaliana. Respective med25 knock-out mutants display reduced low-oxygen stress tolerance. AtMED25 physically associates with a distinct set of hypoxia core genes and its loss partially impairs transcription under hypoxia due to decreased RNA polymerase II recruitment. Association of AtMED25 with target genes requires the presence of ERFVII transcription factors. Next to ERFVII protein stabilisation, also the composition of the Mediator complex including AtMED25 is potentially affected by hypoxia stress as shown by protein-complex pulldown assays. The dynamic response of the Mediator complex to hypoxia is furthermore supported by the fact that two subunits, AtMED8 and AtMED16, are not involved in the establishment of hypoxia tolerance, whilst both act in coordination with AtMED25 under other environmental conditions. We furthermore show that AtMED25 function under hypoxia is independent of ethylene signalling. Finally, functional conservation at the molecular level was found for the MED25-ERFVII module between A. thaliana and the monocot species Oryza sativa, pointing to a potentially universal role of MED25 in coordinating ERFVII-dependent transcript responses to hypoxia in plants.
洪水通过缺氧损害植物生长,从而激活植物的生存和适应反应。低氧条件下的转录响应通常与 VII 组乙烯响应因子(ERFVII)转录因子的激活有关。然而,ERFVII 因子启动基因表达的确切机制和分子组成尚未完全阐明。在这里,我们表明 ERFVII 因子 RELATED TO APETALA 2.2(RAP2.2)和 RAP2.12 与 Mediator 复合物亚基 AtMED25 合作,在拟南芥中协调缺氧条件下的基因表达。相应的 med25 敲除突变体显示出低氧胁迫耐受性降低。AtMED25 与一组特定的缺氧核心基因物理结合,由于 RNA 聚合酶 II 募集减少,其缺失部分会损害缺氧下的转录。AtMED25 与靶基因的结合需要 ERFVII 转录因子的存在。除了 ERFVII 蛋白的稳定化外,如蛋白复合物下拉测定所示,Mediator 复合物的组成(包括 AtMED25)也可能受到缺氧胁迫的影响。Mediator 复合物对缺氧的动态响应还得到了以下事实的支持,即两个亚基 AtMED8 和 AtMED16 不参与缺氧耐受性的建立,而在其他环境条件下,它们都与 AtMED25 协调作用。我们还表明,AtMED25 在缺氧条件下的功能独立于乙烯信号。最后,在拟南芥和单子叶植物水稻之间的分子水平上发现了 MED25-ERFVII 模块的功能保守性,这表明 MED25 在协调 ERFVII 依赖的转录对植物缺氧反应中可能具有普遍作用。