School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK.
Department of Biology, University of Oxford, OX1 3RB, Oxford, UK.
Nat Commun. 2023 Aug 3;14(1):4665. doi: 10.1038/s41467-023-40366-y.
Oxygen is a key signalling component of plant biology, and whilst an oxygen-sensing mechanism was previously described in Arabidopsis thaliana, key features of the associated PLANT CYSTEINE OXIDASE (PCO) N-degron pathway and Group VII ETHYLENE RESPONSE FACTOR (ERFVII) transcription factor substrates remain untested or unknown. We demonstrate that ERFVIIs show non-autonomous activation of root hypoxia tolerance and are essential for root development and survival under oxygen limiting conditions in soil. We determine the combined effects of ERFVIIs in controlling gene expression and define genetic and environmental components required for proteasome-dependent oxygen-regulated stability of ERFVIIs through the PCO N-degron pathway. Using a plant extract, unexpected amino-terminal cysteine sulphonic acid oxidation level of ERFVIIs was observed, suggesting a requirement for additional enzymatic activity within the pathway. Our results provide a holistic understanding of the properties, functions and readouts of this oxygen-sensing mechanism defined through its role in modulating ERFVII stability.
氧气是植物生物学中的一个关键信号成分,虽然先前在拟南芥中描述了一种氧气感应机制,但相关的植物半胱氨酸氧化酶 (PCO) N-连接体途径和 Group VII ETHYLENE RESPONSE FACTOR (ERFVII) 转录因子底物的关键特征仍未经过测试或未知。我们证明 ERFVII 表现出非自主激活根缺氧耐受性,并且对于在土壤中氧气限制条件下的根发育和存活是必需的。我们通过 PCO N-连接体途径确定了 ERFVII 控制基因表达的综合作用,并定义了控制 ERFVII 蛋白水解体依赖性氧调节稳定性所需的遗传和环境组成部分。使用植物提取物,观察到 ERFVIIs 的意想不到的氨基末端半胱氨酸磺酸氧化水平,这表明该途径需要额外的酶活性。我们的结果提供了对该氧气感应机制的性质、功能和读出的整体理解,该机制通过其在调节 ERFVII 稳定性方面的作用来定义。