Holdsworth Michael J, Liu Huanhuan, Castellana Simone, Abbas Mohamad, Liu Jianquan, Perata Pierdomenico
School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK.
Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610065, China.
Plant Physiol. 2024 Dec 23;197(1). doi: 10.1093/plphys/kiae535.
Reduced oxygen availability (hypoxia) represents a key plant abiotic stress in natural and agricultural systems, but conversely it is also an important component of normal growth and development. We review recent advances that demonstrate how genetic adaptations associated with hypoxia impact the known plant oxygen-sensing mechanism through the PLANT CYSTEINE OXIDASE N-degron pathway. Only 3 protein substrates of this pathway have been identified, and all adaptations identified to date are associated with the most important of these, the group VII ETHYLENE RESPONSE FACTOR transcription factors. We discuss how geography, altitude, and agriculture have all shaped molecular responses to hypoxia and how these responses have emerged at different taxonomic levels through the evolution of land plants. Understanding how ecological and agricultural genetic variation acts positively to enhance hypoxia tolerance will provide novel tools and concepts to improve the performance of crops in the face of increasing extreme flooding events.
在自然和农业系统中,氧气可利用性降低(缺氧)是植物面临的一种关键非生物胁迫,但相反,它也是正常生长发育的一个重要组成部分。我们综述了近期的研究进展,这些进展表明与缺氧相关的遗传适应性如何通过植物半胱氨酸氧化酶N-端降解途径影响已知的植物氧传感机制。该途径仅鉴定出3种蛋白质底物,迄今为止鉴定出的所有适应性都与其中最重要的一类,即第VII类乙烯反应因子转录因子有关。我们讨论了地理、海拔和农业如何塑造了对缺氧的分子反应,以及这些反应如何通过陆地植物的进化在不同分类水平上出现。了解生态和农业遗传变异如何积极作用以增强耐缺氧性,将为面对日益增加的极端洪水事件时提高作物性能提供新的工具和概念。