Suppr超能文献

面向 TOF-MRA 中脑动脉瘤自动检测:开放数据、弱标注和解剖学知识。

Towards Automated Brain Aneurysm Detection in TOF-MRA: Open Data, Weak Labels, and Anatomical Knowledge.

机构信息

Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.

Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.

出版信息

Neuroinformatics. 2023 Jan;21(1):21-34. doi: 10.1007/s12021-022-09597-0. Epub 2022 Aug 18.

Abstract

Brain aneurysm detection in Time-Of-Flight Magnetic Resonance Angiography (TOF-MRA) has undergone drastic improvements with the advent of Deep Learning (DL). However, performances of supervised DL models heavily rely on the quantity of labeled samples, which are extremely costly to obtain. Here, we present a DL model for aneurysm detection that overcomes the issue with "weak" labels: oversized annotations which are considerably faster to create. Our weak labels resulted to be four times faster to generate than their voxel-wise counterparts. In addition, our model leverages prior anatomical knowledge by focusing only on plausible locations for aneurysm occurrence. We first train and evaluate our model through cross-validation on an in-house TOF-MRA dataset comprising 284 subjects (170 females / 127 healthy controls / 157 patients with 198 aneurysms). On this dataset, our best model achieved a sensitivity of 83%, with False Positive (FP) rate of 0.8 per patient. To assess model generalizability, we then participated in a challenge for aneurysm detection with TOF-MRA data (93 patients, 20 controls, 125 aneurysms). On the public challenge, sensitivity was 68% (FP rate = 2.5), ranking 4th/18 on the open leaderboard. We found no significant difference in sensitivity between aneurysm risk-of-rupture groups (p = 0.75), locations (p = 0.72), or sizes (p = 0.15). Data, code and model weights are released under permissive licenses. We demonstrate that weak labels and anatomical knowledge can alleviate the necessity for prohibitively expensive voxel-wise annotations.

摘要

基于深度学习(DL)的方法,在时间飞跃磁共振血管造影(TOF-MRA)中的脑动脉瘤检测已经取得了巨大的进展。然而,监督式 DL 模型的性能严重依赖于标注样本的数量,而这些样本的获取成本极高。在这里,我们提出了一种用于动脉瘤检测的 DL 模型,该模型克服了“弱”标签的问题:生成过大的注释要快得多。我们的弱标签生成速度比体素级别的标签快四倍。此外,我们的模型通过仅关注发生动脉瘤的合理位置来利用先验解剖学知识。我们首先通过在一个包含 284 名受试者的内部 TOF-MRA 数据集(170 名女性/127 名健康对照/157 名患者,198 个动脉瘤)上进行交叉验证来训练和评估我们的模型。在这个数据集上,我们的最佳模型实现了 83%的敏感性,假阳性(FP)率为每个患者 0.8 个。为了评估模型的泛化能力,我们随后参加了一个使用 TOF-MRA 数据的动脉瘤检测挑战赛(93 名患者,20 名对照,125 个动脉瘤)。在公共挑战中,敏感性为 68%(FP 率=2.5),在开放排行榜上排名第 4/18。我们发现动脉瘤破裂风险组(p=0.75)、位置(p=0.72)或大小(p=0.15)之间的敏感性没有显著差异。数据、代码和模型权重均以许可方式发布。我们证明了弱标签和解剖学知识可以减轻对极其昂贵的体素级注释的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b10c/9931814/79dd761fee64/12021_2022_9597_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验