Suppr超能文献

心血管疾病诊断:基于机器学习和深度学习模型集成的整体方法。

Cardiovascular disease diagnosis: a holistic approach using the integration of machine learning and deep learning models.

机构信息

Department of Health Informatics and Intelligent Systems, Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.

Cardiovascular Disease Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran.

出版信息

Eur J Med Res. 2024 Sep 11;29(1):455. doi: 10.1186/s40001-024-02044-7.

Abstract

BACKGROUND

The incidence and mortality rates of cardiovascular disease worldwide are a major concern in the healthcare industry. Precise prediction of cardiovascular disease is essential, and the use of machine learning and deep learning can aid in decision-making and enhance predictive abilities.

OBJECTIVE

The goal of this paper is to introduce a model for precise cardiovascular disease prediction by combining machine learning and deep learning.

METHOD

Two public heart disease classification datasets with 70,000 and 1190 records besides a locally collected dataset with 600 records were used in our experiments. Then, a model which makes use of both machine learning and deep learning was proposed in this paper. The proposed model employed CNN and LSTM, as the representatives of deep learning models, besides KNN and XGB, as the representatives of machine learning models. As each classifier defined the output classes, majority voting was then used as an ensemble learner to predict the final output class.

RESULT

The proposed model obtained the highest classification performance based on all evaluation metrics on all datasets, demonstrating its suitability and reliability in forecasting the probability of cardiovascular disease.

摘要

背景

全球心血管疾病的发病率和死亡率是医疗保健行业的主要关注点。精确预测心血管疾病至关重要,机器学习和深度学习的应用可以辅助决策并提高预测能力。

目的

本文旨在通过结合机器学习和深度学习,引入一种精确预测心血管疾病的模型。

方法

本研究使用了两个公开的心脏病分类数据集(分别有 70000 条和 1190 条记录)和一个本地收集的数据集(有 600 条记录)。然后,本文提出了一种同时利用机器学习和深度学习的模型。所提出的模型采用了卷积神经网络(CNN)和长短期记忆网络(LSTM)作为深度学习模型的代表,以及 K 近邻(KNN)和极端梯度提升(XGB)作为机器学习模型的代表。由于每个分类器都定义了输出类别,因此使用多数投票作为集成学习器来预测最终的输出类别。

结果

所提出的模型在所有数据集上基于所有评估指标均获得了最高的分类性能,表明其在预测心血管疾病概率方面具有适用性和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b823/11389500/b5485d34e024/40001_2024_2044_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验