Institute of Technology, University of Tartu, 50411 Tartu, Estonia.
Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany.
ACS Appl Bio Mater. 2021 Sep 20;4(9):7195-7203. doi: 10.1021/acsabm.1c00754. Epub 2021 Aug 30.
The three-dimensional (3D) printing of cell-containing polymeric hydrogels creates living materials (LMs), offering a platform for developing innovative technologies in areas like biosensors and biomanufacturing. The polymer material properties of cross-linkable F127-bis-urethane methacrylate (F127-BUM) allow reproducible 3D printing and stability in physiological conditions, making it suitable for fabricating LMs. Though F127-BUM-based LMs permit diffusion of solute molecules like glucose and ethanol, it remains unknown whether these are permissible for oxygen, essential for respiration. To determine oxygen permissibility, we quantified dissolved oxygen consumption by the budding yeast-laden F127-BUM-based LMs. Moreover, we obtained data on cell-retaining LMs, which allowed a direct comparison between LMs and suspension cultures. We further developed a highly reliable method to isolate cells from LMs for flow cytometry analysis, cell viability evaluation, and the purification of macromolecules. We found oxygen consumption heavily impaired inside LMs, indicating that yeast metabolism relies primarily on fermentation instead of respiration. Applying this finding to brewing, we observed a higher (3.7%) ethanol production using LMs than the traditional brewing process, indicating improved fermentation. Our study concludes that the present F127-BUM-based LMs are useful for microaerobic processes but developing aerobic bioprocesses will require further research.
三维(3D)打印含细胞的聚合物水凝胶可创建活材料(LM),为开发生物传感器和生物制造等领域的创新技术提供了平台。可交联的 F127-双-甲基丙烯酸酯(F127-BUM)的聚合物材料特性允许进行可重复的 3D 打印和在生理条件下的稳定性,使其适合制造 LM。虽然基于 F127-BUM 的 LM 允许葡萄糖和乙醇等溶质分子的扩散,但尚不清楚其是否允许氧气通过,而氧气对于呼吸是必不可少的。为了确定氧气的允许性,我们量化了含有芽殖酵母的 F127-BUM 基 LM 消耗溶解氧的情况。此外,我们获得了保留细胞的 LM 数据,这允许在 LM 和悬浮培养物之间进行直接比较。我们进一步开发了一种非常可靠的方法,可以从 LM 中分离细胞用于流式细胞术分析、细胞活力评估和大分子的纯化。我们发现 LM 内的氧消耗严重受损,表明酵母代谢主要依赖于发酵而不是呼吸。将这一发现应用于酿造,我们观察到使用 LM 的乙醇产量(3.7%)高于传统酿造过程,表明发酵得到了改善。我们的研究得出结论,目前基于 F127-BUM 的 LM 可用于微需氧过程,但开发需氧生物工艺将需要进一步的研究。