Suppr超能文献

基于两级模糊综合评价的高速公路事故严重程度高效准确预测研究

Towards efficient and accurate prediction of freeway accident severity using two-level fuzzy comprehensive evaluation.

作者信息

Wang Guanghui, Li Jinbo, Shen Lingfeng, Ding Shuang, Shi Zongqi, Zuo Fang

机构信息

School of Software, Henan University, Kaifeng, 475004, China.

Henan International Joint Laboratory of Intelligent Network Theory and Key Technology, Henan University, Kaifeng, 475004, China.

出版信息

Heliyon. 2024 Aug 22;10(16):e36396. doi: 10.1016/j.heliyon.2024.e36396. eCollection 2024 Aug 30.

Abstract

Accurately predicting freeway accident severity is crucial for accident prevention, road safety, and emergency rescue services in intelligent freeway systems. However, current research lacks the required precision, hindering the effective implementation of freeway rescue. In this paper, we efficiently address this challenge by categorizing influencing factors into two levels: human and non-human, further subdivided into 6 and 36 categories, respectively. Furthermore, based on the above factors, an efficient and accurate Freeway Accident Severity Prediction (FASP) method is developed by using the two-level fuzzy comprehensive evaluation. The factor and evaluation sets are determined by calculating the fuzzy evaluation matrix of a single factor. The weight matrix is calculated through the entropy method to compute the final evaluation matrix. Based on the maximum membership principle, the severity of the freeway accident is predicted. Finally, based on the experiments conducted with the traffic accident datasets in China and the US, it is shown that FASP is able to accurately predict the severity of freeway traffic accidents with thorough considerations and low computational cost. It is noted that FASP is the first attempt to achieve freeway accident severity prediction using the two-level fuzzy comprehensive evaluation method to the best of our knowledge.

摘要

准确预测高速公路事故严重程度对于智能高速公路系统中的事故预防、道路安全和应急救援服务至关重要。然而,目前的研究缺乏所需的精度,阻碍了高速公路救援的有效实施。在本文中,我们通过将影响因素分为两个层次:人为因素和非人为因素,分别进一步细分为6类和36类,有效地应对了这一挑战。此外,基于上述因素,利用两级模糊综合评价法开发了一种高效准确的高速公路事故严重程度预测(FASP)方法。通过计算单因素模糊评价矩阵确定因素集和评价集。通过熵权法计算权重矩阵,进而计算最终评价矩阵。基于最大隶属度原则,预测高速公路事故的严重程度。最后,基于在中国和美国交通事故数据集上进行的实验表明,FASP能够全面考虑且以较低的计算成本准确预测高速公路交通事故的严重程度。据我们所知,FASP是首次尝试使用两级模糊综合评价法实现高速公路事故严重程度预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d262/11388372/51ba5075291a/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验