Suppr超能文献

使用基于网络的调查问卷收集接受胎儿镜激光光凝治疗的双胎输血综合征患者的长期儿科结局:观察性研究。

Use of Web-Based Surveys to Collect Long-Term Pediatric Outcomes in Patients With Twin-Twin Transfusion Syndrome Treated With Fetoscopic Laser Photocoagulation: Observational Study.

作者信息

Bergh Eric, Rennie Kimberly, Espinoza Jimmy, Johnson Anthony, Papanna Ramesha

机构信息

Division of Fetal Intervention, Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at UTHealth Houston, 6410 Fannin Street, Suite 201, Houston, TX, 77030, United States, 1 (832) 325 7288, 1 713 383 1464.

College of Letters and Science, Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States.

出版信息

JMIR Pediatr Parent. 2024 Sep 11;7:e60039. doi: 10.2196/60039.

Abstract

BACKGROUND

In the United States, patients with monochorionic diamniotic twins who undergo in utero fetoscopic laser photocoagulation (FLP) for twin-twin transfusion syndrome (TTTS) may travel great distances for care. After delivery, many parents cannot return to study sites for formal pediatric evaluation due to geographic location and cost.

OBJECTIVE

The aim of this study was to collect long-term pediatric outcomes in patients who underwent FLP for TTTS.

METHODS

We assessed the feasibility of using a web-based survey designed in REDCap (Research Electronic Data Capture; Vanderbilt University) to collect parent-reported outcomes in children treated for TTTS at a single center during 2011-2019. Patients with ≥1 neonatal survivor were invited via email to complete 5 possible questionnaires: the child status questionnaire (CSQ); fetal center questionnaire (FCQ); Ages & Stages Questionnaires, Third Edition (ASQ-3); Modified Checklist for Autism in Toddlers, Revised With Follow-Up (M-CHAT-R/F); and thank you questionnaire (TYQ). The R programming language (R Foundation for Statistical Computing) was used to automate survey distribution, scoring, and creation of customized reports. The survey was performed in 2019 and repeated after 12 months in the same study population in 2020.

RESULTS

A total of 389 patients in 26 different states and 2 international locations had an email address on file and received an invitation in 2019 to complete the survey (median pediatric age 48.9, IQR 1.0-93.6 months). Among surveyed mothers in 2019, the overall response rate was 37.3% (145/389), and the questionnaire completion rate was 98% (145/148), 87.8% (130/148), 71.1% (81/100), 86.4% (19/22), and 74.3% (110/148) for the CSQ, FCQ, ASQ-3, M-CHAT-R/F, and TYQ, respectively. In 2020, the overall response rate was 57.8% (56/97), and the questionnaire completion rate was 96.4% (54/56), 91.1% (51/56), 86.1% (31/36), 91.7% (11/12), and 80.4% (45/56) for the CSQ, FCQ, ASQ-3, M-CHAT-R/F, and TYQ, respectively.

CONCLUSIONS

This is the first study to use both REDCap and computer automation to aid in the dissemination, collection, and reporting of surveys to collect long-term pediatric outcomes in the field of fetal medicine.

摘要

背景

在美国,患有单绒毛膜双羊膜囊双胎的孕妇因双胎输血综合征(TTTS)接受宫内胎儿镜激光凝固术(FLP)治疗时,可能需要长途跋涉就医。分娩后,由于地理位置和费用等原因,许多父母无法返回研究地点进行正式的儿科评估。

目的

本研究的目的是收集接受FLP治疗TTTS患者的长期儿科结局。

方法

我们评估了使用基于网络的调查问卷(该问卷在REDCap中设计,即研究电子数据采集系统,由范德比尔特大学开发)收集2011年至2019年在单一中心接受TTTS治疗儿童的家长报告结局的可行性。邀请有≥1名新生儿存活的患者通过电子邮件完成5份可能的问卷:儿童状况问卷(CSQ);胎儿中心问卷(FCQ);《年龄与发育阶段问卷》第三版(ASQ-3);《幼儿自闭症修正检查表》(修订版,含随访)(M-CHAT-R/F);以及感谢问卷(TYQ)。使用R编程语言(R统计计算基金会)实现调查问卷分发、评分及定制报告创建的自动化。该调查于2019年进行,并于2020年在同一研究人群中12个月后重复进行。

结果

26个不同州和2个国际地点的389名患者有存档电子邮件地址,并在2019年收到完成调查的邀请(儿童中位年龄48.9岁,四分位间距1.0 - 93.6个月)。在2019年接受调查的母亲中,总体回复率为37.3%(145/389),CSQ、FCQ、ASQ-3、M-CHAT-R/F和TYQ的问卷完成率分别为98%(145/148)、87.8%(130/148)、71.1%(81/100)、86.4%(19/22)和74.3%(110/148)。2020年,总体回复率为57.8%(56/97),CSQ、FCQ、ASQ-3、M-CHAT-R/F和TYQ的问卷完成率分别为96.4%(54/56)、91.1%(51/56)、86.1%(31/36)、91.7%(11/12)和80.4%(45/56)。

结论

这是第一项同时使用REDCap和计算机自动化辅助调查问卷的分发、收集和报告,以收集胎儿医学领域长期儿科结局的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a95/11441452/6cac750f0048/pediatrics-v7-e60039-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验