Yuan Jiahui, Gao Weiwei, Fang Yu, Zhang Haifeng, Song Nan
Institute of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
Department of Ophthalmology, Eye & Ent Hospital of Fudan University, Shanghai, 200031, China.
Med Biol Eng Comput. 2025 Jan;63(1):181-194. doi: 10.1007/s11517-024-03191-z. Epub 2024 Sep 12.
Fluorescein angiography (FA) is a diagnostic method for observing the vascular circulation in the eye. However, it poses a risk to patients. Therefore, generative adversarial networks have been used to convert retinal fundus structure images into FA images. Existing high-resolution image generation methods employ complex deep network models that are challenging to optimize, which leads to issues such as blurred lesion boundaries and poor capture of microleakage and microvessels. In this study, we propose a multiple-ResNet generative adversarial network (GAN) to improve model training, thereby enhancing the ability to generate high-resolution FA images. First, the structure of the multiple-ResNet generator is designed to enhance detail generation in high-resolution images. Second, the Gaussian error linear unit (GELU) activation function is used to help the model converge rapidly. The effectiveness of the multiple-ResNet is verified using the publicly available Isfahan MISP dataset. Experimental results show that our method outperforms other methods, achieving better quantitative results with a mean structural similarity of 0.641, peak signal-to-noise ratio of 18.25, and learned perceptual image patch similarity of 0.272. Compared with state-of-the-art methods, the results showed that using the multiple-ResNet framework and GELU activation function can improve the generation of detailed regions in high-resolution FA images.
荧光素血管造影(FA)是一种用于观察眼部血管循环的诊断方法。然而,它对患者存在风险。因此,生成对抗网络已被用于将视网膜眼底结构图像转换为FA图像。现有的高分辨率图像生成方法采用复杂的深度网络模型,这些模型优化起来具有挑战性,这导致了诸如病变边界模糊、微渗漏和微血管捕捉不佳等问题。在本研究中,我们提出了一种多ResNet生成对抗网络(GAN)来改进模型训练,从而增强生成高分辨率FA图像的能力。首先,设计多ResNet生成器的结构以增强高分辨率图像中的细节生成。其次,使用高斯误差线性单元(GELU)激活函数来帮助模型快速收敛。使用公开可用的伊斯法罕MISP数据集验证了多ResNet的有效性。实验结果表明,我们的方法优于其他方法,以平均结构相似性0.641、峰值信噪比18.25和学习感知图像块相似性0.272实现了更好的定量结果。与现有最先进的方法相比,结果表明使用多ResNet框架和GELU激活函数可以改善高分辨率FA图像中细节区域的生成。