Suppr超能文献

一种基于图自动编码器的用于单细胞类型识别的多级核子空间融合新框架。

A New Graph Autoencoder-Based Multi-Level Kernel Subspace Fusion Framework for Single-Cell Type Identification.

作者信息

Wang Juan, Qiao Tian-Jing, Zheng Chun-Hou, Liu Jin-Xing, Shang Jun-Liang

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2024 Nov-Dec;21(6):2292-2303. doi: 10.1109/TCBB.2024.3459960. Epub 2024 Dec 10.

Abstract

The advent of single-cell RNA sequencing (scRNA-seq) technology offers the opportunity to conduct biological research at the cellular level. Single-cell type identification based on unsupervised clustering is one of the fundamental tasks of scRNA-seq data analysis. Although many single-cell clustering methods have been developed recently, few can fully exploit the deep potential relationships between cells, resulting in suboptimal clustering. In this paper, we propose scGAMF, a graph autoencoder-based multi-level kernel subspace fusion framework for scRNA-seq data analysis. Based on multiple top feature sets, scGAMF unifies deep feature embedding and kernel space analysis into a single framework to learn an accurate clustering affinity matrix. First, we construct multiple top feature sets to avoid the high variability caused by single feature set learning. Second, scGAMF uses a graph autoencoder (GAEs) to extract deep information embedded in the data, and learn embeddings including gene expression patterns and cell-cell relationships. Third, to fully explore the deep potential relationships between cells, we design a multi-level kernel space fusion strategy. This strategy uses a kernel expression model with adaptive similarity preservation to learn a self-expression matrix shared by all embedding spaces of a given feature set, and a consensus affinity matrix across multiple top feature sets. Finally, the consensus affinity matrix is used for spectral clustering, visualization, and identification of gene markers. Extensive validation on real datasets shows that scGAMF achieves higher clustering accuracy than many popular single-cell analysis methods.

摘要

单细胞RNA测序(scRNA-seq)技术的出现为在细胞水平上开展生物学研究提供了契机。基于无监督聚类的单细胞类型识别是scRNA-seq数据分析的基本任务之一。尽管最近已经开发了许多单细胞聚类方法,但很少有方法能够充分挖掘细胞之间深层次的潜在关系,导致聚类效果欠佳。在本文中,我们提出了scGAMF,这是一种基于图自编码器的多层次核子空间融合框架,用于scRNA-seq数据分析。基于多个顶级特征集,scGAMF将深度特征嵌入和核子空间分析统一到一个框架中,以学习准确的聚类亲和矩阵。首先,我们构建多个顶级特征集,以避免因单一特征集学习导致的高变异性。其次,scGAMF使用图自编码器(GAEs)提取数据中嵌入的深度信息,并学习包括基因表达模式和细胞间关系的嵌入。第三,为了充分探索细胞之间深层次的潜在关系,我们设计了一种多层次核子空间融合策略。该策略使用具有自适应相似性保持的核表达模型,来学习给定特征集的所有嵌入空间共享的自表达矩阵,以及多个顶级特征集之间的一致亲和矩阵。最后,将一致亲和矩阵用于光谱聚类、可视化以及基因标记的识别。在真实数据集上的广泛验证表明,scGAMF比许多流行的单细胞分析方法具有更高的聚类准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验