Suppr超能文献

RGCN-BA:用于单细胞RNA测序聚类的具有批次感知的关系图卷积网络

RGCN-BA: relational graph convolutional network with batch awareness for single-cell RNA sequencing clustering.

作者信息

Wang Yueyue, Teng Pengrui, Wu Zheyu, Zhang Yuna, Shen Zhisen, Zhang Qinhu, Huang De-Shuang

机构信息

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Minhang District, 200240, Shanghai, China.

Ningbo Institute of Digital Twin, Eastern Institute of Technology, No. 568 Tongxin Road, Zhuangshi Street, 315201, Zhejiang, China.

出版信息

Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf378.

Abstract

Single-cell RNA sequencing (scRNA-seq) technology has opened new frontiers in biomedical research, offering insights into cellular heterogeneity. Accurate cell clustering and batch effect correction are essential in single-cell RNA sequencing (scRNA-seq) data analysis, forming the foundation for downstream steps. However, most methods handle these tasks separately, limiting their applicability across diverse datasets. To address these challenges, we introduce Relational Graph Convolutional Network with Batch Awareness (RGCN-BA), a deep learning framework that integrates cell clustering and batch effect correction into a unified model. For multi-batch datasets, RGCN-BA leverages relational graph convolutional network to process batch information as distinct edge types, followed by a batch correction layer for global alignment. For single-batch data, it functions with a single edge type. Experiments on both multi-batch and single-batch datasets demonstrate that RGCN-BA outperforms both specialized clustering methods and batch effect correction methods. This versatility in handling both tasks positions RGCN-BA as a powerful tool for enhancing scRNA-seq data analysis.

摘要

单细胞RNA测序(scRNA-seq)技术为生物医学研究开辟了新的前沿领域,使人们能够深入了解细胞异质性。在单细胞RNA测序(scRNA-seq)数据分析中,准确的细胞聚类和批次效应校正至关重要,是后续步骤的基础。然而,大多数方法分别处理这些任务,限制了它们在不同数据集上的适用性。为了应对这些挑战,我们引入了具有批次感知的关系图卷积网络(RGCN-BA),这是一个深度学习框架,将细胞聚类和批次效应校正集成到一个统一的模型中。对于多批次数据集,RGCN-BA利用关系图卷积网络将批次信息作为不同的边类型进行处理,然后通过一个批次校正层进行全局对齐。对于单批次数据,它以单一的边类型运行。在多批次和单批次数据集上的实验表明,RGCN-BA优于专门的聚类方法和批次效应校正方法。RGCN-BA在处理这两项任务上的通用性使其成为增强scRNA-seq数据分析的强大工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c25a/12306446/1b0860c0aedb/bbaf378f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验