Suppr超能文献

重症监护病房中的短期生命参数预测:一项利用心胸外科手术后患者数据的基准研究。

Short-term vital parameter forecasting in the intensive care unit: A benchmark study leveraging data from patients after cardiothoracic surgery.

作者信息

Hinrichs Nils, Roeschl Tobias, Lanmueller Pia, Balzer Felix, Eickhoff Carsten, O'Brien Benjamin, Falk Volkmar, Meyer Alexander

机构信息

Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany.

Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany.

出版信息

PLOS Digit Health. 2024 Sep 12;3(9):e0000598. doi: 10.1371/journal.pdig.0000598. eCollection 2024 Sep.

Abstract

Patients in an Intensive Care Unit (ICU) are closely and continuously monitored, and many machine learning (ML) solutions have been proposed to predict specific outcomes like death, bleeding, or organ failure. Forecasting of vital parameters is a more general approach to ML-based patient monitoring, but the literature on its feasibility and robust benchmarks of achievable accuracy are scarce. We implemented five univariate statistical models (the naïve model, the Theta method, exponential smoothing, the autoregressive integrated moving average model, and an autoregressive single-layer neural network), two univariate neural networks (N-BEATS and N-HiTS), and two multivariate neural networks designed for sequential data (a recurrent neural network with gated recurrent unit, GRU, and a Transformer network) to produce forecasts for six vital parameters recorded at five-minute intervals during intensive care monitoring. Vital parameters were the diastolic, systolic, and mean arterial blood pressure, central venous pressure, peripheral oxygen saturation (measured by non-invasive pulse oximetry) and heart rate, and forecasts were made for 5 through 120 minutes into the future. Patients used in this study recovered from cardiothoracic surgery in an ICU. The patient cohort used for model development (n = 22,348) and internal testing (n = 2,483) originated from a heart center in Germany, while a patient sub-set from the eICU collaborative research database, an American multicenter ICU cohort, was used for external testing (n = 7,477). The GRU was the predominant method in this study. Uni- and multivariate neural network models proved to be superior to univariate statistical models across vital parameters and forecast horizons, and their advantage steadily became more pronounced for increasing forecast horizons. With this study, we established an extensive set of benchmarks for forecast performance in the ICU. Our findings suggest that supplying physicians with short-term forecasts of vital parameters in the ICU is feasible, and that multivariate neural networks are most suited for the task due to their ability to learn patterns across thousands of patients.

摘要

重症监护病房(ICU)中的患者会受到密切且持续的监测,并且已经提出了许多机器学习(ML)解决方案来预测特定结果,如死亡、出血或器官衰竭。对生命体征参数进行预测是基于ML的患者监测中一种更通用的方法,但关于其可行性以及可实现精度的稳健基准的文献却很少。我们实现了五个单变量统计模型(朴素模型、Theta方法、指数平滑法、自回归积分移动平均模型和自回归单层神经网络)、两个单变量神经网络(N-BEATS和N-HiTS)以及两个为序列数据设计的多变量神经网络(带有门控循环单元的循环神经网络,GRU,和Transformer网络),以对重症监护监测期间每隔五分钟记录的六个生命体征参数进行预测。生命体征参数包括舒张压、收缩压和平均动脉压、中心静脉压、外周血氧饱和度(通过无创脉搏血氧饱和度测定法测量)和心率,并对未来5至120分钟进行预测。本研究中使用的患者是在ICU中从心胸外科手术中康复的患者。用于模型开发(n = 22,348)和内部测试(n = 2,483)的患者队列来自德国的一个心脏中心,而来自美国多中心ICU队列eICU协作研究数据库的一个患者子集用于外部测试(n = 7,477)。GRU是本研究中的主要方法。单变量和多变量神经网络模型在生命体征参数和预测范围内均被证明优于单变量统计模型,并且随着预测范围的增加,它们的优势愈发明显。通过这项研究,我们为ICU中的预测性能建立了一套广泛的基准。我们的研究结果表明,向医生提供ICU中生命体征参数的短期预测是可行的,并且多变量神经网络由于能够学习数千名患者的模式,因此最适合这项任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5a5/11392423/9fca7fa19dc8/pdig.0000598.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验