Department of AI & Informatics, Graduate School, Sangmyung University, Hongjimun 2-Gil 20, Jongno-gu, Seoul, 03016, Republic of Korea.
Department of Psychiatry, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, 20, Boramae-Ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea.
Comput Biol Med. 2024 Nov;182:109078. doi: 10.1016/j.compbiomed.2024.109078. Epub 2024 Sep 11.
This study advances the automation of Parkinson's disease (PD) diagnosis by analyzing speech characteristics, leveraging a comprehensive approach that integrates a voting-based machine learning model. Given the growing prevalence of PD, especially among the elderly population, continuous and efficient diagnosis is of paramount importance. Conventional monitoring methods suffer from limitations related to time, cost, and accessibility, underscoring the need for the development of automated diagnostic tools. In this paper, we present a robust model for classifying speech patterns in Korean PD patients, addressing a significant research gap. Our model employs straightforward preprocessing techniques and a voting-based machine learning approach, demonstrating superior performance, particularly when training data is limited. Furthermore, we emphasize the effectiveness of the eGeMAPSv2 feature set in PD analysis and introduce new features that substantially enhance classification accuracy. The proposed model, achieving an accuracy of 84.73 % and an area under the ROC (AUC) score of 92.18 % on a dataset comprising 100 Korean PD patients and 100 healthy controls, offers a practical solution for automated diagnosis applications, such as smartphone apps. Future research endeavors will concentrate on enhancing the model's performance and delving deeper into the relationship between high-importance features and PD.
本研究通过分析语音特征来推进帕金森病 (PD) 的自动化诊断,采用了一种综合方法,将基于投票的机器学习模型集成其中。鉴于 PD 的患病率不断上升,尤其是在老年人群中,持续、高效的诊断至关重要。传统的监测方法在时间、成本和可及性方面存在局限性,这凸显了开发自动化诊断工具的必要性。在本文中,我们提出了一种用于分类韩国 PD 患者语音模式的强大模型,解决了一个重要的研究空白。我们的模型采用了简单的预处理技术和基于投票的机器学习方法,表现出了卓越的性能,尤其是在训练数据有限的情况下。此外,我们强调了 eGeMAPSv2 特征集在 PD 分析中的有效性,并引入了新的特征,大大提高了分类准确性。该模型在包含 100 名韩国 PD 患者和 100 名健康对照的数据集上实现了 84.73%的准确率和 92.18%的 ROC 曲线下面积 (AUC) 评分,为智能手机应用等自动化诊断应用提供了实用的解决方案。未来的研究将集中于提高模型的性能,并深入研究重要特征与 PD 之间的关系。