Suppr超能文献

移动辅助语音状况分析系统用于帕金森病:可用性条件评估。

A mobile-assisted voice condition analysis system for Parkinson's disease: assessment of usability conditions.

机构信息

Departamento de Matemáticas, Universidad de Extremadura, Cáceres, Spain.

Departamento de Tecnología de los Computadores y las Comunicaciones, Universidad de Extremadura, Cáceres, Spain.

出版信息

Biomed Eng Online. 2021 Nov 21;20(1):114. doi: 10.1186/s12938-021-00951-y.

Abstract

BACKGROUND AND OBJECTIVE

Automatic voice condition analysis systems to detect Parkinson's disease (PD) are generally based on speech data recorded under acoustically controlled conditions and professional supervision. The performance of these approaches in a free-living scenario is unknown. The aim of this research is to investigate the impact of uncontrolled conditions (realistic acoustic environment and lack of supervision) on the performance of automatic PD detection systems based on speech.

METHODS

A mobile-assisted voice condition analysis system is proposed to aid in the detection of PD using speech. The system is based on a server-client architecture. In the server, feature extraction and machine learning algorithms are designed and implemented to discriminate subjects with PD from healthy ones. The Android app allows patients to submit phonations and physicians to check the complete record of every patient. Six different machine learning classifiers are applied to compare their performance on two different speech databases. One of them is an in-house database (UEX database), collected under professional supervision by using the same Android-based smartphone in the same room, whereas the other one is an age, sex and health-status balanced subset of mPower study for PD, which provides real-world data. By applying identical methodology, single-database experiments have been performed on each database, and also cross-database tests. Cross-validation has been applied to assess generalization performance and hypothesis tests have been used to report statistically significant differences.

RESULTS

In the single-database experiments, a best accuracy rate of 0.92 (AUC = 0.98) has been obtained on UEX database, while a considerably lower best accuracy rate of 0.71 (AUC = 0.76) has been achieved using the mPower-based database. The cross-database tests provided very degraded accuracy metrics.

CONCLUSION

The results clearly show the potential of the proposed system as an aid for general practitioners to conduct triage or an additional tool for neurologists to perform diagnosis. However, due to the performance degradation observed using data from mPower study, semi-controlled conditions are encouraged, i.e., voices recorded at home by the patients themselves following a strict recording protocol and control of the information about patients by the medical doctor at charge.

摘要

背景与目的

用于检测帕金森病(PD)的自动语音状况分析系统通常基于在声学控制条件和专业监督下记录的语音数据。这些方法在自由生活场景中的性能尚不清楚。本研究旨在调查不受控制的条件(现实的声学环境和缺乏监督)对基于语音的自动 PD 检测系统性能的影响。

方法

提出了一种移动辅助语音状况分析系统,以帮助使用语音检测 PD。该系统基于服务器-客户端架构。在服务器中,设计并实现了特征提取和机器学习算法,以区分 PD 患者和健康人。Android 应用程序允许患者提交发声,医生检查每位患者的完整记录。应用了六种不同的机器学习分类器来比较它们在两个不同语音数据库上的性能。其中一个是内部数据库(UEX 数据库),由同一款基于 Android 的智能手机在同一房间内由专业人员监督收集,另一个是 mPower 研究中用于 PD 的年龄、性别和健康状况平衡子集,提供真实世界的数据。通过应用相同的方法,在每个数据库上进行了单数据库实验,也进行了跨数据库测试。交叉验证用于评估泛化性能,假设检验用于报告具有统计学意义的差异。

结果

在单数据库实验中,在 UEX 数据库上获得了最佳准确率为 0.92(AUC=0.98),而在使用 mPower 数据库时,获得了相当低的最佳准确率为 0.71(AUC=0.76)。跨数据库测试提供了非常差的准确性指标。

结论

结果清楚地表明了所提出的系统作为一般医生进行分诊的辅助工具或神经科医生进行诊断的附加工具的潜力。然而,由于使用 mPower 研究数据观察到的性能下降,鼓励采用半受控条件,即患者按照严格的记录协议在家中由患者自己录制声音,并由负责的医生控制有关患者的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43ae/8607631/e5becc371bd9/12938_2021_951_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验