Fan Jiaxin, Cao Shuai, Peng Hang, Zhi Yuanjie, Zhan Shuqin, Li Rui
Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Youyi West Road No. 256, Xi'an, 710068, China.
Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi'an, China.
Lipids Health Dis. 2025 Jul 17;24(1):241. doi: 10.1186/s12944-025-02664-w.
BACKGROUND: Parkinson's disease (PD) is a prevalent neurodegenerative condition, the effect of obesity on PD remains controversial. We aimed to investigate the associations of obesity patterns on PD and all-cause mortality, while developing machine learning (ML)-driven predictive and prognostic models for PD. METHODS: Fifty-one thousand, three hundred ninety-four adults from the National Health and Nutrition Examination Survey (NHANES) 1999-2018 were classified into four obesity patterns via body mass index (BMI) and waist circumference (WC). Associations of obesity patterns with PD risk and all-cause mortality were evaluated via multivariable logistic and Cox proportional hazards regression across three adjusted models. Subgroup, sensitivity, and restricted cubic spline (RCS) analyses examined stability, robustness, and nonlinearity. An integrative ML-driven architecture identified key features to develop predictive and prognostic nomograms, validated by the area under the receiver operating characteristic curves (AUCROCs) and calibration curves. Survival differences were analyzed using Kaplan-Meier curves. Shapley additive explanations (SHAP) enhanced model explanation. RESULTS: Compound obesity significantly increased PD risk (Model 1: OR = 1.83, P < 0.001; Model 2: OR = 1.70, P = 0.002; Model 3: OR = 1.71, P = 0.006) yet correlated with reduced all-cause mortality in PD patients (Model 1: HR = 0.43, P = 0.003; Model 2: HR = 0.75, P = 0.428; Model 3: HR = 0.41, P = 0.033). Subgroup analysis revealed only HbA1c-modified association of compound obesity with PD (P = 0.031). Sensitivity analyses confirmed robustness (pooled OR = 1.83, P < 0.001; pooled HR = 0.43, P = 0.003). RCS analyses revealed BMI-dependent PD risk escalation (P = 0.008, BMI < 45.0 kg/m), inverted U-shaped WC-PD link (P < 0.001), and inverse dose-response BMI-mortality relationship (P = 0.003), along with multiphasic WC-mortality association (P = 0.555 at 95 cm and P = 0.091 at 118 cm). LASSO + RF identified eight features, achieving moderate performance in PD prediction (SMOTE set: AUCROC = 0.75, Brier = 0.20) and prognosis (train set: AUCROC = 0.72, Brier = 0.22) nomograms, with similar results in the test set (AUCROC = 0.70, Brier = 0.01 for prediction, 0.87 and 0.18 for prognosis). No 24-month survival differences were observed across four obesity patterns (train set: P = 0.73; test set: P = 0.32). CONCLUSIONS: This study preliminarily reveals that compound obesity significantly increases PD risk yet paradoxically associates with reduced all-cause mortality in PD patients. Validated predictive and prognostic nomograms for PD achieve relatively robust performances. Nonetheless, extensive longitudinal studies are required to validate these exploratory findings more comprehensively.
背景:帕金森病(PD)是一种常见的神经退行性疾病,肥胖对PD的影响仍存在争议。我们旨在研究肥胖模式与PD及全因死亡率之间的关联,同时开发机器学习(ML)驱动的PD预测和预后模型。 方法:将1999 - 2018年美国国家健康与营养检查调查(NHANES)中的51394名成年人通过体重指数(BMI)和腰围(WC)分为四种肥胖模式。通过三个调整模型的多变量逻辑回归和Cox比例风险回归评估肥胖模式与PD风险和全因死亡率的关联。亚组分析、敏感性分析和受限立方样条(RCS)分析检验了稳定性、稳健性和非线性。一个综合的ML驱动架构识别关键特征以开发预测和预后列线图,并通过受试者操作特征曲线下面积(AUCROCs)和校准曲线进行验证。使用Kaplan-Meier曲线分析生存差异。Shapley加法解释(SHAP)增强了模型解释。 结果:复合肥胖显著增加PD风险(模型1:OR = 1.83,P < 0.001;模型2:OR = 1.70,P = 0.002;模型3:OR = 1.71,P = 0.006),但与PD患者全因死亡率降低相关(模型1:HR = 0.43,P = 0.003;模型2:HR = 0.75,P = 0.428;模型3:HR = 0.41,P = 0.033)。亚组分析仅显示复合肥胖与PD的糖化血红蛋白修正关联(P = 0.031)。敏感性分析证实了稳健性(合并OR = 1.83,P < 0.001;合并HR = 0.43,P = 0.003)。RCS分析显示BMI依赖性PD风险升高(P = 0.008,BMI < 45.0 kg/m²)、WC与PD呈倒U形关联(P < 0.001)以及BMI与死亡率呈反向剂量反应关系(P = 0.003),同时WC与死亡率呈多相关联(95 cm时P = 0.555,118 cm时P = 0.091)。LASSO + RF识别出八个特征,在PD预测(SMOTE集:AUCROC = 0.75,Brier = 0.20)和预后(训练集:AUCROC = 0.72,Brier = 0.22)列线图中表现中等,测试集结果相似(预测时AUCROC = 0.70,Brier = 0.01;预后时AUCROC = 0.87,Brier = 0.18)。在四种肥胖模式中未观察到24个月生存差异(训练集:P = 0.73;测试集:P = 0.32)。 结论:本研究初步揭示复合肥胖显著增加PD风险,但自相矛盾的是与PD患者全因死亡率降低相关。经过验证的PD预测和预后列线图表现出相对稳健的性能。尽管如此,仍需要广泛的纵向研究来更全面地验证这些探索性发现。
Clin Orthop Relat Res. 2024-9-1
Curr Diab Rep. 2025-6-7
Front Endocrinol (Lausanne). 2025-2-21
BMC Med Inform Decis Mak. 2025-2-17