文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于预测帕金森病及其预后的可解释机器学习驱动模型:肥胖模式关联以及使用1999 - 2018年美国国家健康与营养检查调查(NHANES)数据进行模型开发

Explainable machine learning-driven models for predicting Parkinson's disease and its prognosis: obesity patterns associations and models development using NHANES 1999-2018 data.

作者信息

Fan Jiaxin, Cao Shuai, Peng Hang, Zhi Yuanjie, Zhan Shuqin, Li Rui

机构信息

Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Youyi West Road No. 256, Xi'an, 710068, China.

Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi'an, China.

出版信息

Lipids Health Dis. 2025 Jul 17;24(1):241. doi: 10.1186/s12944-025-02664-w.


DOI:10.1186/s12944-025-02664-w
PMID:40676536
Abstract

BACKGROUND: Parkinson's disease (PD) is a prevalent neurodegenerative condition, the effect of obesity on PD remains controversial. We aimed to investigate the associations of obesity patterns on PD and all-cause mortality, while developing machine learning (ML)-driven predictive and prognostic models for PD. METHODS: Fifty-one thousand, three hundred ninety-four adults from the National Health and Nutrition Examination Survey (NHANES) 1999-2018 were classified into four obesity patterns via body mass index (BMI) and waist circumference (WC). Associations of obesity patterns with PD risk and all-cause mortality were evaluated via multivariable logistic and Cox proportional hazards regression across three adjusted models. Subgroup, sensitivity, and restricted cubic spline (RCS) analyses examined stability, robustness, and nonlinearity. An integrative ML-driven architecture identified key features to develop predictive and prognostic nomograms, validated by the area under the receiver operating characteristic curves (AUCROCs) and calibration curves. Survival differences were analyzed using Kaplan-Meier curves. Shapley additive explanations (SHAP) enhanced model explanation. RESULTS: Compound obesity significantly increased PD risk (Model 1: OR = 1.83, P < 0.001; Model 2: OR = 1.70, P = 0.002; Model 3: OR = 1.71, P = 0.006) yet correlated with reduced all-cause mortality in PD patients (Model 1: HR = 0.43, P = 0.003; Model 2: HR = 0.75, P = 0.428; Model 3: HR = 0.41, P = 0.033). Subgroup analysis revealed only HbA1c-modified association of compound obesity with PD (P = 0.031). Sensitivity analyses confirmed robustness (pooled OR = 1.83, P < 0.001; pooled HR = 0.43, P = 0.003). RCS analyses revealed BMI-dependent PD risk escalation (P = 0.008, BMI < 45.0 kg/m), inverted U-shaped WC-PD link (P < 0.001), and inverse dose-response BMI-mortality relationship (P = 0.003), along with multiphasic WC-mortality association (P = 0.555 at 95 cm and P = 0.091 at 118 cm). LASSO + RF identified eight features, achieving moderate performance in PD prediction (SMOTE set: AUCROC = 0.75, Brier = 0.20) and prognosis (train set: AUCROC = 0.72, Brier = 0.22) nomograms, with similar results in the test set (AUCROC = 0.70, Brier = 0.01 for prediction, 0.87 and 0.18 for prognosis). No 24-month survival differences were observed across four obesity patterns (train set: P = 0.73; test set: P = 0.32). CONCLUSIONS: This study preliminarily reveals that compound obesity significantly increases PD risk yet paradoxically associates with reduced all-cause mortality in PD patients. Validated predictive and prognostic nomograms for PD achieve relatively robust performances. Nonetheless, extensive longitudinal studies are required to validate these exploratory findings more comprehensively.

摘要

背景:帕金森病(PD)是一种常见的神经退行性疾病,肥胖对PD的影响仍存在争议。我们旨在研究肥胖模式与PD及全因死亡率之间的关联,同时开发机器学习(ML)驱动的PD预测和预后模型。 方法:将1999 - 2018年美国国家健康与营养检查调查(NHANES)中的51394名成年人通过体重指数(BMI)和腰围(WC)分为四种肥胖模式。通过三个调整模型的多变量逻辑回归和Cox比例风险回归评估肥胖模式与PD风险和全因死亡率的关联。亚组分析、敏感性分析和受限立方样条(RCS)分析检验了稳定性、稳健性和非线性。一个综合的ML驱动架构识别关键特征以开发预测和预后列线图,并通过受试者操作特征曲线下面积(AUCROCs)和校准曲线进行验证。使用Kaplan-Meier曲线分析生存差异。Shapley加法解释(SHAP)增强了模型解释。 结果:复合肥胖显著增加PD风险(模型1:OR = 1.83,P < 0.001;模型2:OR = 1.70,P = 0.002;模型3:OR = 1.71,P = 0.006),但与PD患者全因死亡率降低相关(模型1:HR = 0.43,P = 0.003;模型2:HR = 0.75,P = 0.428;模型3:HR = 0.41,P = 0.033)。亚组分析仅显示复合肥胖与PD的糖化血红蛋白修正关联(P = 0.031)。敏感性分析证实了稳健性(合并OR = 1.83,P < 0.001;合并HR = 0.43,P = 0.003)。RCS分析显示BMI依赖性PD风险升高(P = 0.008,BMI < 45.0 kg/m²)、WC与PD呈倒U形关联(P < 0.001)以及BMI与死亡率呈反向剂量反应关系(P = 0.003),同时WC与死亡率呈多相关联(95 cm时P = 0.555,118 cm时P = 0.091)。LASSO + RF识别出八个特征,在PD预测(SMOTE集:AUCROC = 0.75,Brier = 0.20)和预后(训练集:AUCROC = 0.72,Brier = 0.22)列线图中表现中等,测试集结果相似(预测时AUCROC = 0.70,Brier = 0.01;预后时AUCROC = 0.87,Brier = 0.18)。在四种肥胖模式中未观察到24个月生存差异(训练集:P = 0.73;测试集:P = 0.32)。 结论:本研究初步揭示复合肥胖显著增加PD风险,但自相矛盾的是与PD患者全因死亡率降低相关。经过验证的PD预测和预后列线图表现出相对稳健的性能。尽管如此,仍需要广泛的纵向研究来更全面地验证这些探索性发现。

相似文献

[1]
Explainable machine learning-driven models for predicting Parkinson's disease and its prognosis: obesity patterns associations and models development using NHANES 1999-2018 data.

Lipids Health Dis. 2025-7-17

[2]
Association of weight-adjusted waist index with all-cause and cardiovascular disease mortality among rheumatoid arthritis population: a cohort study from the NHANES 1999-2018.

Lipids Health Dis. 2025-7-1

[3]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[4]
The association of obesity and lipid-related indicators with all-cause and cardiovascular mortality risks in patients with diabetes or prediabetes: a cross-sectional study based on machine learning algorithms.

Front Endocrinol (Lausanne). 2025-6-2

[5]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[6]
Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm.

Clin Orthop Relat Res. 2024-1-1

[7]
Elevated pulse wave velocity as a marker of arterial stiffness and its association with mortality in US adults.

Sci Rep. 2025-7-2

[8]
Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study.

J Med Internet Res. 2025-5-26

[9]
Interpretable machine learning models for survival prediction in prostate cancer bone metastases.

Sci Rep. 2025-7-6

[10]
Association between alkaline phosphatase and cancer in American adults: 2003-2016 NHANES.

BMC Cancer. 2025-7-9

本文引用的文献

[1]
The Obesity Paradox of Cardiovascular Outcomes in Patients with Diabetes Mellitus.

Curr Diab Rep. 2025-6-7

[2]
The ratio of blood urea nitrogen to high-density lipoprotein cholesterol: a novel risk-stratifying tool for infective endocarditis.

Lipids Health Dis. 2025-5-30

[3]
Obesity paradox in cognitive function: a longitudinal study of BMI and cognitive impairment in older adult Chinese population.

Front Aging Neurosci. 2025-5-9

[4]
Paradoxical effects of adiposity and inflammation on immunotherapy efficacy in gastric cancer: novel insights from real-world data.

Gastric Cancer. 2025-5-12

[5]
Explainable machine learning model for prediction of 28-day all-cause mortality in immunocompromised patients in the intensive care unit: a retrospective cohort study based on MIMIC-IV database.

Eur J Med Res. 2025-5-3

[6]
Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of depression in stroke patients.

BMC Geriatr. 2025-3-22

[7]
Modeling and mapping of contextual factors associated with adolescent birth rates in Thailand between 2009 and 2018.

BMC Public Health. 2025-3-19

[8]
Construction of a nomogram for predicting the risk of all-cause mortality in patients with diabetic retinopathy.

Front Endocrinol (Lausanne). 2025-2-21

[9]
Prediction of depressive disorder using machine learning approaches: findings from the NHANES.

BMC Med Inform Decis Mak. 2025-2-17

[10]
Nigral Neuroinflammation and Dopaminergic Neurons in Parkinson's Disease and Atypical Parkinsonisms.

Ann Neurol. 2025-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索