Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France; CHRU Brest, 29200 Brest, France.
Inserm U1230 BRM (Bacterial RNAs and Medicine), Université de Rennes, 35043 Rennes, France.
Am J Hum Genet. 2024 Oct 3;111(10):2176-2189. doi: 10.1016/j.ajhg.2024.08.016. Epub 2024 Sep 11.
We previously identified a homozygous Alu insertion variant (Alu_Ins) in the 3'-untranslated region (3'-UTR) of SPINK1 as the cause of severe infantile isolated exocrine pancreatic insufficiency. Although we established that Alu_Ins leads to the complete loss of SPINK1 mRNA expression, the precise mechanisms remained elusive. Here, we aimed to elucidate these mechanisms through a hypothesis-driven approach. Initially, we speculated that, owing to its particular location, Alu_Ins could independently disrupt mRNA 3' end formation and/or affect other post-transcriptional processes such as nuclear export and translation. However, employing a 3'-UTR luciferase reporter assay, Alu_Ins was found to result in only an ∼50% reduction in luciferase activity compared to wild type, which is insufficient to account for the severe pancreatic deficiency in the Alu_Ins homozygote. We then postulated that double-stranded RNA (dsRNA) structures formed between Alu elements, an upstream mechanism regulating gene expression, might be responsible. Using RepeatMasker, we identified two Alu elements within SPINK1's third intron, both oriented oppositely to Alu_Ins. Through RNAfold predictions and full-length gene expression assays, we investigated orientation-dependent interactions between these Alu repeats. We provide compelling evidence to link the detrimental effect of Alu_Ins to extensive dsRNA structures formed between Alu_Ins and pre-existing intronic Alu sequences, including the restoration of SPINK1 mRNA expression by aligning all three Alu elements in the same orientation. Given the widespread presence of Alu elements in the human genome and the potential for new Alu insertions at almost any locus, our findings have important implications for detecting and interpreting Alu insertions in disease genes.
我们之前在 SPINK1 的 3'非翻译区(3'-UTR)中发现了一个同源 Alu 插入变异(Alu_Ins),这是导致严重婴儿期孤立性外分泌胰腺功能不全的原因。尽管我们已经确定 Alu_Ins 导致 SPINK1 mRNA 表达完全缺失,但确切的机制仍不清楚。在这里,我们旨在通过假设驱动的方法阐明这些机制。最初,我们推测由于其特殊位置,Alu_Ins 可以独立地破坏 mRNA 3'末端形成,和/或影响其他转录后过程,如核输出和翻译。然而,通过 3'-UTR 荧光素酶报告基因检测,发现 Alu_Ins 仅导致荧光素酶活性比野生型降低约 50%,这不足以解释 Alu_Ins 纯合子中严重的胰腺缺陷。然后我们假设双链 RNA(dsRNA)结构之间形成的双链 RNA(dsRNA)结构,这是一种调节基因表达的上游机制,可能是原因所在。使用 RepeatMasker,我们在 SPINK1 的第三个内含子中发现了两个 Alu 元件,它们都与 Alu_Ins 反向排列。通过 RNAfold 预测和全长基因表达检测,我们研究了这些 Alu 重复序列之间的定向依赖性相互作用。我们提供了令人信服的证据将 Alu_Ins 的有害效应与 Alu_Ins 和预先存在的内含子 Alu 序列之间形成的广泛 dsRNA 结构联系起来,包括通过将所有三个 Alu 元件定向相同来恢复 SPINK1 mRNA 表达。鉴于 Alu 元件在人类基因组中的广泛存在以及几乎在任何基因座都有可能发生新的 Alu 插入,我们的发现对检测和解释疾病基因中的 Alu 插入具有重要意义。