Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
J Neurosci Methods. 2024 Dec;412:110279. doi: 10.1016/j.jneumeth.2024.110279. Epub 2024 Sep 17.
Multivariate pattern analysis (MVPA) has proven an excellent tool in cognitive neuroscience. It also holds a strong promise when applied to optically-pumped magnetometer-based magnetoencephalography.
To optimize OPM-MEG systems for MVPA experiments this study examines data from a conventional MEG magnetometer array, focusing on appropriate noise reduction techniques for magnetometers. We determined the least required number of sensors needed for robust MVPA for image categorization experiments.
We found that the use of signal space separation (SSS) without a proper regularization significantly lowered the classification accuracy considering a sub-array of 102 magnetometers or a sub-array of 204 gradiometers. We also found that classification accuracy did not improve when going beyond 30 sensors irrespective of whether SSS has been applied.
The power spectra of data filtered with SSS has a substantially higher noise floor that data cleaned with SSP or HFC. Consequently, MVPA decoding results obtained from the SSS-filtered data are significantly lower compared to all other methods employed.
When designing MEG system based on SQUID magnetometers optimized for multivariate analysis for image categorization experiments, about 30 magnetometers are sufficient. We advise against applying SSS filters without a proper regularization to data from MEG and OPM systems prior to performing MVPA as this method, albeit reducing low-frequency external noise contributions, also introduces an increase in broadband noise. We recommend employing noise reduction techniques that either decrease or maintain the noise floor of the data like signal-space projection, homogeneous field correction and gradient noise reduction.
多元模式分析(MVPA)已被证明是认知神经科学中的一种出色工具。当应用于基于光学泵浦磁强计的脑磁图时,它也具有很大的潜力。
为了优化基于光学泵浦磁强计的脑磁图的 MVPA 实验,本研究检查了传统的脑磁图磁强计阵列的数据,重点研究了磁强计的适当降噪技术。我们确定了进行图像分类实验稳健 MVPA 所需的最少传感器数量。
我们发现,在没有适当正则化的情况下使用信号空间分离(SSS)会显著降低分类准确性,考虑到使用 102 个磁强计的子阵列或 204 个梯度计的子阵列。我们还发现,无论是否应用 SSS,当超过 30 个传感器时,分类准确性都不会提高。
用 SSS 滤波后的数据的功率谱具有明显更高的噪声基底,比用 SSP 或 HFC 清洁后的数据高。因此,与所有其他使用的方法相比,从 SSS 滤波数据获得的 MVPA 解码结果显著降低。
在为图像分类实验设计基于超导量子干涉仪磁强计的优化多元分析的脑磁图系统时,大约 30 个磁强计就足够了。我们建议在进行 MVPA 之前,不要对脑磁图和基于光学泵浦磁强计的系统的数据应用没有适当正则化的 SSS 滤波器,因为这种方法虽然减少了低频外部噪声的贡献,但也会增加宽带噪声。我们建议使用降低或保持数据噪声基底的降噪技术,例如信号空间投影、均匀场校正和梯度降噪。