Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China.
Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou, 310051, China.
Brain Topogr. 2023 May;36(3):350-370. doi: 10.1007/s10548-023-00957-w. Epub 2023 Apr 12.
Magnetoencephalography (MEG) is a noninvasive functional neuroimaging modality but highly susceptible to environmental interference. Signal space separation (SSS) is a method for improving the SNR to separate the MEG signals from external interference. The origin and truncation values of SSS significantly affect the SSS performance. The origin value fluctuates with respect to the helmet array, and determining the truncation values using the traversal method is time-consuming; thus, this method is inappropriate for optically pumped magnetometer (OPM) systems with flexible array designs. Herein, an automatic optimization method for the SSS parameters is proposed. Virtual sources are set inside and outside the brain to simulate the signals of interest and interference, respectively, via forward model, with the sensor array as prior information. The objective function is determined as the error between the signals from simulated sources inside the brain and the SSS reconstructed signals; thus, the optimized parameters are solved inversely by minimizing the objective function. To validate the proposed method, a simulation analysis and MEG auditory-evoked experiments were conducted. For an OPM sensor array, this method can precisely determine the optimized origin and truncation values of the SSS simultaneously, and the auditory-evoked component, for example, N100, can be accurately located in the temporal cortex. The proposed optimization procedure outperforms the traditional method with regard to the computation time and accuracy, simplifying the SSS process in signal preprocessing and enhancing the performance of SSS denoising.
脑磁图(MEG)是一种非侵入式的功能神经影像学方法,但非常容易受到环境干扰。信号空间分离(SSS)是一种提高信噪比的方法,用于从外部干扰中分离 MEG 信号。SSS 的原点和截断值对 SSS 的性能有显著影响。原点值随头盔阵列而波动,使用遍历法确定截断值非常耗时;因此,对于具有灵活阵列设计的光泵磁力仪(OPM)系统,这种方法并不合适。本文提出了一种 SSS 参数的自动优化方法。通过正向模型在大脑内外设置虚拟源,分别模拟感兴趣的信号和干扰信号,传感器阵列作为先验信息。目标函数定义为大脑内模拟源信号与 SSS 重建信号之间的误差;因此,通过最小化目标函数来反演求解优化参数。为了验证所提出的方法,进行了仿真分析和 MEG 听觉诱发电位实验。对于 OPM 传感器阵列,该方法可以同时精确确定 SSS 的优化原点和截断值,并且可以准确地在颞叶皮层定位听觉诱发电位成分,例如 N100。与传统方法相比,所提出的优化程序在计算时间和准确性方面表现更优,简化了信号预处理中的 SSS 过程,提高了 SSS 去噪性能。