Alexander Nicholas A, Medrano Johan, Seymour Robert A, Mellor Stephanie, O'Neill George C, Spedden Meaghan E, Tierney Tim M, Maguire Eleanor A
Functional Imaging Laboratory (FIL), Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK.
Oxford Centre for Human Brain Activity (OHBA), Department of Psychiatry, University of Oxford, Oxford, UK.
Eur J Neurosci. 2025 Mar;61(5):e70060. doi: 10.1111/ejn.70060.
When working with sensor-level data recorded using on-scalp neuroimaging methods such as electroencephalography (EEG), it is common practice to use two-dimensional (2D) representations of sensor positions to aid interpretation. Positioning of sensors relative to anatomy, as in the classic 10-20 system of EEG electrode placement, enables the use of 2D topographies that are familiar to many researchers and clinicians. However, when using another increasingly popular on-scalp neuroimaging method, optically pumped magnetometer-based magnetoencephalography (OP-MEG), bespoke sensor arrays are much more common, and these are not prepared according to any standard principle. Consequently, polar projection is often used to produce individual sensor topographies that are not directly related to anatomy and cannot be averaged across people simply. Given the current proliferation of OP-MEG facilities globally, this issue will become an increasing hindrance when visualising OP-MEG data, particularly for group studies. To address this problem, we adapted and extended the 10-20 system to build a flexible, anatomical projection method applied to digitised head shape, fiducials and sensor positions. We demonstrate that the method maintains spatially veridical representations across individuals improving on standard polar projections at varying OPM sensor array densities. By applying our projection method, the benefits of anatomically veridical 2D topographies can now be enjoyed when visualising data, such as those from OP-MEG, regardless of variation in sensor placement as in sparse or focal arrays.
在处理使用头皮神经成像方法(如脑电图(EEG))记录的传感器级数据时,使用传感器位置的二维(2D)表示来辅助解释是常见的做法。传感器相对于解剖结构的定位,如在经典的EEG电极放置10-20系统中,使得许多研究人员和临床医生熟悉的2D地形图得以使用。然而,当使用另一种越来越流行的头皮神经成像方法——基于光泵磁力仪的脑磁图(OP-MEG)时,定制的传感器阵列更为常见,并且这些阵列并非按照任何标准原则制备。因此,极坐标投影通常用于生成与解剖结构无直接关联且无法简单地在个体间进行平均的单个传感器地形图。鉴于目前全球OP-MEG设备的激增,在可视化OP-MEG数据时,尤其是对于群体研究,这个问题将成为越来越大的障碍。为了解决这个问题,我们对10-20系统进行了调整和扩展,以构建一种应用于数字化头部形状、基准点和传感器位置的灵活的解剖投影方法。我们证明,该方法在不同的OPM传感器阵列密度下优于标准极坐标投影,能够在个体间保持空间真实的表示。通过应用我们的投影方法,在可视化数据(如来自OP-MEG的数据)时,无论传感器放置在稀疏或聚焦阵列中如何变化,现在都可以享受到解剖学上真实的2D地形图的好处。