Suppr超能文献

无源电阻开关电路中的一种涌现吸引子网络。

An emergent attractor network in a passive resistive switching circuit.

作者信息

Li Yongxiang, Wang Shiqing, Yang Ke, Yang Yuchao, Sun Zhong

机构信息

School of Integrated Circuits, Institute for Artificial Intelligence, Peking University, Beijing, China.

Beijing Advanced Innovation Center for Integrated Circuits, Peking University, Beijing, China.

出版信息

Nat Commun. 2024 Sep 12;15(1):7683. doi: 10.1038/s41467-024-52132-9.

Abstract

Resistive memory devices feature drastic conductance change and fast switching dynamics. Particularly, nonvolatile bipolar switching events (set and reset) can be regarded as a unique nonlinear activation function characteristic of a hysteretic loop. Upon simultaneous activation of multiple rows in a crosspoint array, state change of one device may contribute to the conditional switching of others, suggesting an interactive network existing in the circuit. Here, we prove that a passive resistive switching circuit is essentially an attractor network, where the binary memory devices are artificial neurons while the pairwise voltage differences define an anti-symmetric weight matrix. An energy function is successfully constructed for this network, showing that every switching in the circuit would decrease the energy. Due to the nonvolatile hysteretic function, the energy change for bit flip in this network is thresholded, which is different from the classic Hopfield network. It allows more stable states stored in the circuit, thus representing a highly compact and efficient solution for associative memory. Network dynamics (towards stable states) and their modulations by external voltages have been demonstrated in experiment by 3-neuron and 4-neuron circuits.

摘要

电阻式存储器件具有显著的电导变化和快速的开关动力学特性。特别是,非易失性双极开关事件(设置和重置)可被视为具有滞后回线的独特非线性激活函数特征。在交叉点阵列中同时激活多行时,一个器件的状态变化可能会导致其他器件的条件性开关,这表明电路中存在一个交互网络。在此,我们证明了一个无源电阻式开关电路本质上是一个吸引子网络,其中二元存储器件是人工神经元,而成对的电压差定义了一个反对称权重矩阵。我们成功地为该网络构建了一个能量函数,表明电路中的每次开关都会降低能量。由于非易失性滞后函数,该网络中比特翻转的能量变化是有阈值的,这与经典的霍普菲尔德网络不同。它允许在电路中存储更多稳定状态,从而代表了一种用于联想记忆的高度紧凑且高效的解决方案。通过3神经元和4神经元电路的实验证明了网络动力学(趋向稳定状态)及其受外部电压的调制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8c7/11393082/072440148a6b/41467_2024_52132_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验