Zhang Jingxin, Zhang Bingbing, Li Tengteng, Li Yibo, Zhu Qi, Wang Xiting, Lu Tao
School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China.
Front Cardiovasc Med. 2024 Aug 29;11:1375768. doi: 10.3389/fcvm.2024.1375768. eCollection 2024.
Cardioembolic Stroke (CS) and Atrial Fibrillation (AF) are prevalent diseases that significantly impact the quality of life and impose considerable financial burdens on society. Despite increasing evidence of a significant association between the two diseases, their complex interactions remain inadequately understood. We conducted bioinformatics analysis and employed machine learning techniques to investigate potential shared biomarkers between CS and AF.
We retrieved the CS and AF datasets from the Gene Expression Omnibus (GEO) database and applied Weighted Gene Co-Expression Network Analysis (WGCNA) to develop co-expression networks aimed at identifying pivotal modules. Next, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the shared genes within the modules related to CS and AF. The STRING database was used to build a protein-protein interaction (PPI) network, facilitating the discovery of hub genes within the network. Finally, several common used machine learning approaches were applied to construct the clinical predictive model of CS and AF. ROC curve analysis to evaluate the diagnostic value of the identified biomarkers for AF and CS.
Functional enrichment analysis indicated that pathways intrinsic to the immune response may be significantly involved in CS and AF. PPI network analysis identified a potential association of 4 key genes with both CS and AF, specifically PIK3R1, ITGAM, FOS, and TLR4.
In our study, we utilized WGCNA, PPI network analysis, and machine learning to identify four hub genes significantly associated with CS and AF. Functional annotation outcomes revealed that inherent pathways related to the immune response connected to the recognized genes might could pave the way for further research on the etiological mechanisms and therapeutic targets for CS and AF.
心源性栓塞性卒中(CS)和心房颤动(AF)是常见疾病,对生活质量有重大影响,并给社会带来相当大的经济负担。尽管越来越多的证据表明这两种疾病之间存在显著关联,但其复杂的相互作用仍未得到充分理解。我们进行了生物信息学分析,并采用机器学习技术来研究CS和AF之间潜在的共同生物标志物。
我们从基因表达综合数据库(GEO)中检索了CS和AF数据集,并应用加权基因共表达网络分析(WGCNA)来构建共表达网络,以识别关键模块。接下来,我们对与CS和AF相关模块内的共享基因进行基因本体(GO)和京都基因与基因组百科全书(KEGG)通路富集分析。利用STRING数据库构建蛋白质-蛋白质相互作用(PPI)网络,便于发现网络中的枢纽基因。最后,应用几种常用的机器学习方法构建CS和AF的临床预测模型。通过ROC曲线分析评估所识别生物标志物对AF和CS的诊断价值。
功能富集分析表明,免疫反应的内在通路可能与CS和AF密切相关。PPI网络分析确定了4个关键基因与CS和AF均存在潜在关联,具体为PIK3R1、ITGAM、FOS和TLR4。
在我们的研究中,我们利用WGCNA、PPI网络分析和机器学习来识别与CS和AF显著相关的4个枢纽基因。功能注释结果显示,与已识别基因相关的免疫反应内在通路可能为进一步研究CS和AF的病因机制及治疗靶点铺平道路。