Department of Computer Science.
Institute for Biomedical Informatics.
AMIA Annu Symp Proc. 2022 Feb 21;2021:1099-1108. eCollection 2021.
While remarkable advances have been made in Computed Tomography (CT), most of the existing efforts focus on imaging enhancement while reducing radiation dose. How to harmonize CT image data captured using different scanners is vital in cross-center large-scale radiomics studies but remains the boundary to explore. Furthermore, the lack of paired training image problem makes it computationally challenging to adopt existing deep learning models. We propose a novel deep learning approach called CVH-CT for harmonizing CT images captured using scanners from different vendors. The generator of CVH-CT uses a self-attention mechanism to learn the scanner-related information. We also propose a VGG feature based domain loss to effectively extract texture properties from unpaired image data to learn the scanner based texture distributions. The experimental results show that CVH-CT is clearly better than the baselines because of the use of the proposed domain loss, and CVH-CT can effectively reduce the scanner-related variability in terms of radiomic features.
虽然在计算机断层扫描 (CT) 方面取得了显著的进展,但现有的大多数研究都集中在降低辐射剂量的同时增强成像效果。如何协调使用不同扫描仪采集的 CT 图像数据对于跨中心大规模放射组学研究至关重要,但这仍然是一个有待探索的领域。此外,缺乏配对的训练图像问题使得采用现有的深度学习模型具有计算挑战性。我们提出了一种名为 CVH-CT 的新型深度学习方法,用于协调来自不同供应商的扫描仪采集的 CT 图像。CVH-CT 的生成器使用自注意力机制来学习与扫描仪相关的信息。我们还提出了一种基于 VGG 特征的域损失,以有效地从非配对图像数据中提取纹理属性,从而学习基于扫描仪的纹理分布。实验结果表明,由于使用了所提出的域损失,CVH-CT 明显优于基线方法,并且 CVH-CT 可以有效地降低基于放射组学特征的与扫描仪相关的可变性。