Kourmoulakis George, Michail Antonios, Anestopoulos Dimitris, Christodoulides Joseph A, Tripathi Manoj, Dalton Alan Β, Parthenios John, Papagelis Konstantinos, Stratakis Emmanuel, Kioseoglou George
Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 71110 Heraklion, Greece.
Department of Materials Science and Engineering, University of Crete, 70013 Heraklion, Greece.
Nanomaterials (Basel). 2024 Sep 3;14(17):1437. doi: 10.3390/nano14171437.
Nanoscale-engineered surfaces induce regulated strain in atomic layers of 2D materials that could be useful for unprecedented photonics applications and for storing and processing quantum information. Nevertheless, these strained structures need to be investigated extensively. Here, we present texture-induced strain distribution in single-layer WS (1L-WS) transferred over Si/SiO (285 nm) substrate. The detailed nanoscale landscapes and their optical detection are carried out through Atomic Force Microscopy, Scanning Electron Microscopy, and optical spectroscopy. Remarkable differences have been observed in the WS sheet localized in the confined well and at the periphery of the cylindrical geometry of the capped engineered surface. Raman spectroscopy independently maps the whole landscape of the samples, and temperature-dependent helicity-resolved photoluminescence (PL) experiments (off-resonance excitation) show that suspended areas sustain circular polarization from 150 K up to 300 K, in contrast to supported (on un-patterned area of Si/SiO) and strained 1L-WS. Our study highlights the impact of the dielectric environment on the optical properties of two-dimensional (2D) materials, providing valuable insights into the selection of appropriate substrates for implementing atomically thin materials in advanced optoelectronic devices.
纳米尺度工程表面在二维材料的原子层中诱导出可控应变,这对于前所未有的光子学应用以及存储和处理量子信息可能是有用的。然而,这些应变结构需要进行广泛研究。在此,我们展示了转移到Si/SiO(285纳米)衬底上的单层WS(1L-WS)中的纹理诱导应变分布。通过原子力显微镜、扫描电子显微镜和光谱学对详细的纳米尺度形貌及其光学检测进行了研究。在封闭阱中以及覆盖的工程表面圆柱几何形状周边的WS片中观察到了显著差异。拉曼光谱独立地绘制了样品的整个形貌,并且温度依赖的螺旋度分辨光致发光(PL)实验(非共振激发)表明,与支撑的(在Si/SiO的无图案区域上)和应变的1L-WS相比,悬空区域在150 K至300 K范围内维持圆偏振。我们的研究突出了介电环境对二维(2D)材料光学性质的影响,为在先进光电器件中实现原子级薄材料选择合适的衬底提供了有价值的见解。