Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, UK.
Nat Commun. 2017 May 22;8:15093. doi: 10.1038/ncomms15093.
Quantum light emitters have been observed in atomically thin layers of transition metal dichalcogenides. However, they are found at random locations within the host material and usually in low densities, hindering experiments aiming to investigate this new class of emitters. Here, we create deterministic arrays of hundreds of quantum emitters in tungsten diselenide and tungsten disulphide monolayers, emitting across a range of wavelengths in the visible spectrum (610-680 nm and 740-820 nm), with a greater spectral stability than their randomly occurring counterparts. This is achieved by depositing monolayers onto silica substrates nanopatterned with arrays of 150-nm-diameter pillars ranging from 60 to 190 nm in height. The nanopillars create localized deformations in the material resulting in the quantum confinement of excitons. Our method may enable the placement of emitters in photonic structures such as optical waveguides in a scalable way, where precise and accurate positioning is paramount.
在过渡金属二卤化物的原子层中已经观察到量子光发射器。然而,它们随机出现在主体材料的不同位置,而且通常密度较低,这阻碍了旨在研究这一新类发射器的实验。在这里,我们在二硒化钨和二硫化钨单层中创建了数百个量子发射器的确定性阵列,在可见光谱范围内(610-680nm 和 740-820nm)发射,其光谱稳定性比随机出现的同类发射器更高。这是通过将单层沉积到具有直径为 150nm 的纳米柱阵列的二氧化硅衬底上来实现的,这些纳米柱的高度从 60nm 到 190nm 不等。纳米柱在材料中产生局部变形,从而导致激子的量子限制。我们的方法可以以可扩展的方式在光子结构(如光波导)中放置发射器,其中精确和准确的定位至关重要。