Basic Medicine Research Innovation Center for Cardiometabolic DiseasesMinistry of EducationLaboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China.
Cell Mol Life Sci. 2024 Sep 13;81(1):401. doi: 10.1007/s00018-024-05432-8.
Methylglyoxal (MGO), a reactive dicarbonyl metabolite of glucose, plays a prominent role in the pathogenesis of diabetes and vascular complications. Our previous studies have shown that MGO is associated with increased oxidative stress, inflammatory responses and apoptotic cell death in endothelial cells (ECs). Pyroptosis is a novel form of inflammatory caspase-1-dependent programmed cell death that is closely associated with the activation of the NOD-like receptor 3 (NLRP3) inflammasome. Recent studies have shown that sulforaphane (SFN) can inhibit pyroptosis, but the effects and underlying mechanisms by which SFN affects MGO-induced pyroptosis in endothelial cells have not been determined. Here, we found that SFN prevented MGO-induced pyroptosis by suppressing oxidative stress and inflammation in vitro and in vivo. Our results revealed that SFN dose-dependently prevented MGO-induced HUVEC pyroptosis, inhibited pyroptosis-associated biochemical changes, and attenuated MGO-induced morphological alterations in mitochondria. SFN pretreatment significantly suppressed MGO-induced ROS production and the inflammatory response by inhibiting the NLRP3 inflammasome (NLRP3, ASC, and caspase-1) signaling pathway by activating Nrf2/HO-1 signaling. Similar results were obtained in vivo, and we demonstrated that SFN prevented MGO-induced oxidative damage, inflammation and pyroptosis by reversing the MGO-induced downregulation of the NLRP3 signaling pathway through the upregulation of Nrf2. Additionally, an Nrf2 inhibitor (ML385) noticeably attenuated the protective effects of SFN on MGO-induced pyroptosis and ROS generation by inhibiting the Nrf2/HO-1 signaling pathway, and a ROS scavenger (NAC) and a permeability transition pore inhibitor (CsA) completely reversed these effects. Moreover, NLRP3 inhibitor (MCC950) and caspase-1 inhibitor (VX765) further reduced pyroptosis in endothelial cells that were pretreated with SFN. Collectively, these findings broaden our understanding of the mechanism by which SFN inhibits pyroptosis induced by MGO and suggests important implications for the potential use of SFN in the treatment of vascular diseases.
甲基乙二醛(MGO)是葡萄糖的一种活性二羰基代谢物,在糖尿病和血管并发症的发病机制中起着重要作用。我们之前的研究表明,MGO 与内皮细胞(ECs)中的氧化应激增加、炎症反应和细胞凋亡有关。细胞焦亡是一种新型的依赖半胱氨酸天冬氨酸蛋白酶-1(caspase-1)的程序性细胞死亡形式,与 NOD 样受体 3(NLRP3)炎性体的激活密切相关。最近的研究表明,萝卜硫素(SFN)可以抑制细胞焦亡,但是 SFN 影响内皮细胞中 MGO 诱导的细胞焦亡的作用和潜在机制尚未确定。在这里,我们发现 SFN 通过在体外和体内抑制氧化应激和炎症来防止 MGO 诱导的细胞焦亡。我们的结果表明,SFN 以剂量依赖的方式防止 MGO 诱导的 HUVEC 细胞焦亡,抑制与细胞焦亡相关的生化变化,并减轻 MGO 诱导的线粒体形态改变。SFN 预处理通过激活 Nrf2/HO-1 信号通路抑制 NLRP3 炎性体(NLRP3、ASC 和 caspase-1)信号通路,显著抑制 MGO 诱导的 ROS 产生和炎症反应。在体内也得到了类似的结果,我们证明 SFN 通过逆转 NLRP3 信号通路的下调来防止 MGO 诱导的氧化损伤、炎症和细胞焦亡,从而防止 MGO 诱导的氧化损伤、炎症和细胞焦亡,这是通过上调 Nrf2 实现的。此外,Nrf2 抑制剂(ML385)通过抑制 Nrf2/HO-1 信号通路明显减弱 SFN 对 MGO 诱导的细胞焦亡和 ROS 生成的保护作用,而 ROS 清除剂(NAC)和通透性转换孔抑制剂(CsA)完全逆转了这些作用。此外,NLRP3 抑制剂(MCC950)和 caspase-1 抑制剂(VX765)进一步降低了用 SFN 预处理的内皮细胞中的细胞焦亡。总之,这些发现拓宽了我们对 SFN 抑制 MGO 诱导的细胞焦亡机制的理解,并为 SFN 在治疗血管疾病中的潜在应用提供了重要意义。