Fontanella Alessandro, Mair Grant, Wardlaw Joanna, Trucco Emanuele, Storkey Amos
IEEE Trans Med Imaging. 2024 Sep 13;PP. doi: 10.1109/TMI.2024.3460391.
Segmentation masks of pathological areas are useful in many medical applications, such as brain tumour and stroke management. Moreover, healthy counterfactuals of diseased images can be used to enhance radiologists' training files and to improve the interpretability of segmentation models. In this work, we present a weakly supervised method to generate a healthy version of a diseased image and then use it to obtain a pixel-wise anomaly map. To do so, we start by considering a saliency map that approximately covers the pathological areas, obtained with ACAT. Then, we propose a technique that allows to perform targeted modifications to these regions, while preserving the rest of the image. In particular, we employ a diffusion model trained on healthy samples and combine Denoising Diffusion Probabilistic Model (DDPM) and Denoising Diffusion Implicit Model (DDIM) at each step of the sampling process. DDPM is used to modify the areas affected by a lesion within the saliency map, while DDIM guarantees reconstruction of the normal anatomy outside of it. The two parts are also fused at each timestep, to guarantee the generation of a sample with a coherent appearance and a seamless transition between edited and unedited parts. We verify that when our method is applied to healthy samples, the input images are reconstructed without significant modifications. We compare our approach with alternative weakly supervised methods on the task of brain lesion segmentation, achieving the highest mean Dice and IoU scores among the models considered.
病理区域的分割掩码在许多医学应用中都很有用,例如脑肿瘤和中风的治疗。此外,患病图像的健康反事实可以用于增强放射科医生的训练文件,并提高分割模型的可解释性。在这项工作中,我们提出了一种弱监督方法,用于生成患病图像的健康版本,然后用它来获得逐像素的异常图。为此,我们首先考虑一个通过ACAT获得的、大致覆盖病理区域的显著性图。然后,我们提出了一种技术,允许对这些区域进行有针对性的修改,同时保留图像的其余部分。具体来说,我们使用一个在健康样本上训练的扩散模型,并在采样过程的每个步骤中结合去噪扩散概率模型(DDPM)和去噪扩散隐式模型(DDIM)。DDPM用于修改显著性图中受病变影响的区域,而DDIM则保证其外部正常解剖结构的重建。这两部分在每个时间步也会融合,以确保生成一个外观连贯、编辑部分和未编辑部分之间无缝过渡的样本。我们验证了,当我们的方法应用于健康样本时,输入图像能够在没有显著修改的情况下被重建。我们在脑病变分割任务中将我们的方法与其他弱监督方法进行了比较,在所考虑的模型中取得了最高的平均Dice和IoU分数。