Kadry Karim, Gupta Shreya, Nezami Farhad R, Edelman Elazer R
Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
Brigham and Women's Hospital, Boston, MA, 02115, USA.
NPJ Digit Med. 2024 Dec 5;7(1):354. doi: 10.1038/s41746-024-01332-0.
Numerical simulations of cardiovascular device deployment within digital twins of patient-specific anatomy can expedite and de-risk the device design process. Nonetheless, the exclusive use of patient-specific data constrains the anatomic variability that can be explored. We study how Latent Diffusion Models (LDMs) can edit digital twins to create digital siblings. Siblings can serve as the basis for comparative simulations, which can reveal how subtle anatomic variations impact device deployment, and augment virtual cohorts for improved device assessment. Using a case example centered on cardiac anatomy, we study various methods to generate digital siblings. We specifically introduce anatomic variation at different spatial scales or within localized regions, demonstrating the existence of bias toward common anatomic features. We furthermore leverage this bias for virtual cohort augmentation through selective editing, addressing issues related to dataset imbalance and diversity. Our framework delineates the capabilities of diffusion models in synthesizing anatomic variation for numerical simulation studies.
在患者特定解剖结构的数字孪生模型中对心血管设备展开进行数值模拟,可以加快设备设计过程并降低风险。然而,仅使用患者特定数据会限制可探索的解剖变异性。我们研究了潜在扩散模型(LDM)如何编辑数字孪生模型以创建数字孪生兄弟。数字孪生兄弟可作为比较模拟的基础,这可以揭示细微的解剖变异如何影响设备展开,并扩充虚拟队列以改进设备评估。以心脏解剖为中心的案例,我们研究了生成数字孪生兄弟的各种方法。我们特别在不同空间尺度或局部区域引入解剖变异,证明了对常见解剖特征存在偏差。我们还通过选择性编辑利用这种偏差进行虚拟队列扩充,解决与数据集不平衡和多样性相关的问题。我们的框架描述了扩散模型在为数值模拟研究合成解剖变异方面的能力。