Suppr超能文献

探索数字孪生体解剖编辑中扩散模型的极限与能力。

Probing the limits and capabilities of diffusion models for the anatomic editing of digital twins.

作者信息

Kadry Karim, Gupta Shreya, Nezami Farhad R, Edelman Elazer R

机构信息

Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.

Brigham and Women's Hospital, Boston, MA, 02115, USA.

出版信息

NPJ Digit Med. 2024 Dec 5;7(1):354. doi: 10.1038/s41746-024-01332-0.

Abstract

Numerical simulations of cardiovascular device deployment within digital twins of patient-specific anatomy can expedite and de-risk the device design process. Nonetheless, the exclusive use of patient-specific data constrains the anatomic variability that can be explored. We study how Latent Diffusion Models (LDMs) can edit digital twins to create digital siblings. Siblings can serve as the basis for comparative simulations, which can reveal how subtle anatomic variations impact device deployment, and augment virtual cohorts for improved device assessment. Using a case example centered on cardiac anatomy, we study various methods to generate digital siblings. We specifically introduce anatomic variation at different spatial scales or within localized regions, demonstrating the existence of bias toward common anatomic features. We furthermore leverage this bias for virtual cohort augmentation through selective editing, addressing issues related to dataset imbalance and diversity. Our framework delineates the capabilities of diffusion models in synthesizing anatomic variation for numerical simulation studies.

摘要

在患者特定解剖结构的数字孪生模型中对心血管设备展开进行数值模拟,可以加快设备设计过程并降低风险。然而,仅使用患者特定数据会限制可探索的解剖变异性。我们研究了潜在扩散模型(LDM)如何编辑数字孪生模型以创建数字孪生兄弟。数字孪生兄弟可作为比较模拟的基础,这可以揭示细微的解剖变异如何影响设备展开,并扩充虚拟队列以改进设备评估。以心脏解剖为中心的案例,我们研究了生成数字孪生兄弟的各种方法。我们特别在不同空间尺度或局部区域引入解剖变异,证明了对常见解剖特征存在偏差。我们还通过选择性编辑利用这种偏差进行虚拟队列扩充,解决与数据集不平衡和多样性相关的问题。我们的框架描述了扩散模型在为数值模拟研究合成解剖变异方面的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/279f/11618336/671409a7c963/41746_2024_1332_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验