García-García Antonio M, Liu Chang, Verbaarschot Jacobus J M
Shanghai Center for Complex Physics, School of Physics and Astronomy, <a href="https://ror.org/0220qvk04">Shanghai Jiao Tong University</a>, Shanghai 200240, China.
Center for Nuclear Theory and Department of Physics Astronomy, <a href="https://ror.org/05qghxh33">Stony Brook University</a>, Stony Brook, New York 11794, USA.
Phys Rev Lett. 2024 Aug 30;133(9):091602. doi: 10.1103/PhysRevLett.133.091602.
The saturation of a recently proposed universal bound on the Lyapunov exponent has been conjectured to signal the existence of a gravity dual. This saturation occurs in the low-temperature limit of the dense Sachdev-Ye-Kitaev (SYK) model, N Majorana fermions with q body (q>2) infinite-range interactions. We calculate certain out-of-time-order correlators (OTOCs) for N≤64 fermions for a highly sparse SYK model and find no significant dependence of the Lyapunov exponent on sparsity up to near the percolation limit where the Hamiltonian breaks up into blocks. This provides strong support to the saturation of the Lyapunov exponent in the low-temperature limit of the sparse SYK. A key ingredient to reaching N=64 is the development of a novel quantum spin model simulation library that implements highly optimized matrix-free Krylov subspace methods on graphical processing units. This leads to a significantly lower simulation time as well as vastly reduced memory usage over previous approaches, while using modest computational resources. Strong sparsity-driven statistical fluctuations require both the use of a much larger number of disorder realizations with respect to the dense limit and a careful finite size scaling analysis. The saturation of the bound in the sparse SYK points to the existence of a gravity analog that would enlarge substantially the number of field theories with this feature.
最近提出的李雅普诺夫指数通用界的饱和现象被推测为引力对偶存在的信号。这种饱和出现在密集的萨赫德夫 - 叶 - 基塔耶夫(SYK)模型的低温极限中,该模型有(N)个马约拉纳费米子,具有(q)体((q>2))无限范围相互作用。我们针对高度稀疏的SYK模型,计算了(N\leq64)个费米子的某些非时间序关联函数(OTOC),发现在哈密顿量分解为块的渗流极限附近之前,李雅普诺夫指数对稀疏度没有显著依赖性。这为稀疏SYK低温极限下李雅普诺夫指数的饱和提供了有力支持。实现(N = 64)的一个关键因素是开发了一种新颖的量子自旋模型模拟库,该库在图形处理单元上实现了高度优化的无矩阵克雷洛夫子空间方法。这导致模拟时间显著缩短,内存使用量也比以前的方法大幅减少,同时使用适度的计算资源。强烈的稀疏驱动统计涨落要求相对于密集极限使用大量更多的无序实现以及仔细的有限尺寸标度分析。稀疏SYK中界的饱和表明存在一种引力类似物,这将大大增加具有此特征的场论数量。