Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, E416 Research Bldg, Washington, DC, 20057, USA.
The George Washington University, Washington, DC, USA.
J Exp Clin Cancer Res. 2024 Sep 14;43(1):263. doi: 10.1186/s13046-024-03182-w.
Macrophage-based cell therapies have shown modest success in clinical trials, which can be attributed to their phenotypic plasticity, where transplanted macrophages get reprogrammed towards a pro-tumor phenotype. In most tumor types, including melanoma, the balance between antitumor M1-like and tumor-promoting M2-like macrophages is critical in defining the local immune response with a higher M1/M2 ratio favoring antitumor immunity. Therefore, designing novel strategies to increase the M1/M2 ratio in the TME has high clinical significance and benefits macrophage-based cell therapies.
In this study, we reprogrammed antitumor and proinflammatory macrophages ex-vivo with HDAC6 inhibitors (HDAC6i). We administered the reprogrammed macrophages intratumorally as an adoptive cell therapy (ACT) in the syngeneic SM1 murine melanoma model and patient-derived xenograft bearing NSG-SGM3 humanized mouse models. We phenotyped the tumor-infiltrated immune cells by flow cytometry and histological analysis of tumor sections for macrophage markers. We performed bulk RNA-seq profiling of murine bone marrow-derived macrophages treated with vehicle or HDAC6i and single-cell RNA-seq profiling of SM1 tumor-infiltrated immune cells to determine the effect of intratumor macrophage ACT on the tumor microenvironment (TME). We further analyzed the single-cell data to identify key cell-cell interactions and trajectory analysis to determine the fate of tumor-associated macrophages post-ACT.
Macrophage ACT resulted in diminished tumor growth in both mouse models. We also demonstrated that HDAC6 inhibition in macrophages suppressed the polarization toward tumor-promoting phenotype by attenuating STAT3-mediated M2 reprogramming. Two weeks post-transplantation, ACT macrophages were viable, and inhibition of HDAC6 rendered intratumor transplanted M1 macrophages resistant to repolarization towards protumor M2 phenotype in-vivo. Further characterization of tumors by flow cytometry, single-cell transcriptomics, and single-cell secretome analyses revealed a significant enrichment of antitumor M1-like macrophages, resulting in increased M1/M2 ratio and infiltration of CD8 effector T-cells. Computational analysis of single-cell RNA-seq data for cell-cell interactions and trajectory analyses indicated activation of monocytes and T-cells in the TME.
In summary, for the first time, we demonstrated the potential of reprogramming macrophages ex-vivo with HDAC6 inhibitors as a viable macrophage cell therapy to treat solid tumors.
基于巨噬细胞的细胞疗法在临床试验中取得了一定的成功,这可以归因于其表型可塑性,即移植的巨噬细胞会被重新编程为促肿瘤表型。在大多数肿瘤类型中,包括黑色素瘤,抗肿瘤 M1 样和促肿瘤 M2 样巨噬细胞之间的平衡对于定义局部免疫反应至关重要,较高的 M1/M2 比值有利于抗肿瘤免疫。因此,设计新的策略来增加肿瘤微环境中的 M1/M2 比值具有重要的临床意义,并有益于基于巨噬细胞的细胞疗法。
在这项研究中,我们使用组蛋白去乙酰化酶 6 抑制剂(HDAC6i)对抗肿瘤和促炎巨噬细胞进行了体外重编程。我们将重编程后的巨噬细胞作为过继细胞疗法(ACT),在同基因 SM1 黑色素瘤模型和携带 NSG-SGM3 人源化小鼠的患者来源异种移植模型中进行了肿瘤内给药。我们通过流式细胞术和肿瘤切片的组织学分析对肿瘤浸润免疫细胞进行了表型分析,以检测巨噬细胞标志物。我们对用载体或 HDAC6i 处理的小鼠骨髓来源巨噬细胞进行了批量 RNA-seq 分析,并对 SM1 肿瘤浸润免疫细胞进行了单细胞 RNA-seq 分析,以确定肿瘤内巨噬细胞 ACT 对肿瘤微环境(TME)的影响。我们进一步分析了单细胞数据,以确定关键的细胞-细胞相互作用,并进行轨迹分析,以确定 ACT 后肿瘤相关巨噬细胞的命运。
巨噬细胞 ACT 导致两种小鼠模型中的肿瘤生长减少。我们还证明,通过抑制 STAT3 介导的 M2 重编程,巨噬细胞中的 HDAC6 抑制抑制了向促肿瘤表型的极化。移植后两周,ACT 巨噬细胞仍然存活,HDAC6 的抑制使肿瘤内移植的 M1 巨噬细胞在体内抵抗向促肿瘤 M2 表型的再极化。通过流式细胞术、单细胞转录组学和单细胞分泌组学分析对肿瘤进行进一步特征分析,发现抗肿瘤 M1 样巨噬细胞显著富集,导致 M1/M2 比值增加和 CD8 效应 T 细胞浸润。单细胞 RNA-seq 数据的计算分析表明,细胞-细胞相互作用和轨迹分析表明 TME 中的单核细胞和 T 细胞被激活。
总之,我们首次证明了使用 HDAC6 抑制剂体外重编程巨噬细胞作为一种可行的巨噬细胞细胞疗法来治疗实体肿瘤的潜力。