Suppr超能文献

表皮定量分析:在重建人表皮的苏木精-二氨基联苯胺(H-DAB)染色图像上对表皮分化标志物进行无监督检测和定量分析

EpidermaQuant: Unsupervised Detection and Quantification of Epidermal Differentiation Markers on H-DAB-Stained Images of Reconstructed Human Epidermis.

作者信息

Zamojski Dawid, Gogler Agnieszka, Scieglinska Dorota, Marczyk Michal

机构信息

Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland.

Genetic Laboratory, Gyncentrum Sp. z o.o., 41-208 Sosnowiec, Poland.

出版信息

Diagnostics (Basel). 2024 Aug 29;14(17):1904. doi: 10.3390/diagnostics14171904.

Abstract

The integrity of the reconstructed human epidermis generated in vitro can be assessed using histological analyses combined with immunohistochemical staining of keratinocyte differentiation markers. Technical differences during the preparation and capture of stained images may influence the outcome of computational methods. Due to the specific nature of the analyzed material, no annotated datasets or dedicated methods are publicly available. Using a dataset with 598 unannotated images showing cross-sections of in vitro reconstructed human epidermis stained with DAB-based immunohistochemistry reaction to visualize four different keratinocyte differentiation marker proteins (filaggrin, keratin 10, Ki67, HSPA2) and counterstained with hematoxylin, we developed an unsupervised method for the detection and quantification of immunohistochemical staining. The pipeline consists of the following steps: (i) color normalization; (ii) color deconvolution; (iii) morphological operations; (iv) automatic image rotation; and (v) clustering. The most effective combination of methods includes (i) Reinhard's normalization; (ii) Ruifrok and Johnston color-deconvolution method; (iii) proposed image-rotation method based on boundary distribution of image intensity; and (iv) k-means clustering. The results of the work should enhance the performance of quantitative analyses of protein markers in reconstructed human epidermis samples and enable the comparison of their spatial distribution between different experimental conditions.

摘要

可以使用组织学分析结合角质形成细胞分化标志物的免疫组织化学染色来评估体外生成的重建人表皮的完整性。染色图像制备和采集过程中的技术差异可能会影响计算方法的结果。由于分析材料的特殊性,没有公开可用的注释数据集或专用方法。我们使用一个包含598张未注释图像的数据集,这些图像显示了体外重建人表皮的横截面,用基于DAB的免疫组织化学反应染色以可视化四种不同的角质形成细胞分化标志物蛋白(丝聚蛋白、角蛋白10、Ki67、HSPA2)并用苏木精复染,开发了一种用于免疫组织化学染色检测和定量的无监督方法。该流程包括以下步骤:(i) 颜色归一化;(ii) 颜色反卷积;(iii) 形态学操作;(iv) 自动图像旋转;以及 (v) 聚类。最有效的方法组合包括:(i) Reinhard归一化;(ii) Ruifrok和Johnston颜色反卷积方法;(iii) 基于图像强度边界分布提出的图像旋转方法;以及 (iv) k均值聚类。这项工作的结果应能提高重建人表皮样本中蛋白质标志物定量分析的性能,并能够比较不同实验条件下它们的空间分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3095/11394256/1b57cf44417c/diagnostics-14-01904-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验