文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

刺激响应性智能高分子材料综述——最新进展与未来展望

A Comprehensive Review of Stimuli-Responsive Smart Polymer Materials-Recent Advances and Future Perspectives.

作者信息

Balcerak-Woźniak Alicja, Dzwonkowska-Zarzycka Monika, Kabatc-Borcz Janina

机构信息

Department of Organic Chemistry, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland.

出版信息

Materials (Basel). 2024 Aug 28;17(17):4255. doi: 10.3390/ma17174255.


DOI:10.3390/ma17174255
PMID:39274645
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11396725/
Abstract

Today, smart materials are commonly used in various fields of science and technology, such as medicine, electronics, soft robotics, the chemical industry, the automotive field, and many others. Smart polymeric materials hold good promise for the future due to their endless possibilities. This group of advanced materials can be sensitive to changes or the presence of various chemical, physical, and biological stimuli, e.g., light, temperature, pH, magnetic/electric field, pressure, microorganisms, bacteria, viruses, toxic substances, and many others. This review concerns the newest achievements in the area of smart polymeric materials. The recent advances in the designing of stimuli-responsive polymers are described in this paper.

摘要

如今,智能材料广泛应用于各个科技领域,如医学、电子学、软体机器人技术、化学工业、汽车领域等等。智能高分子材料因其无限的可能性而对未来充满希望。这类先进材料能够对各种化学、物理和生物刺激(如光、温度、pH值、磁场/电场、压力、微生物、细菌、病毒、有毒物质等)的变化或存在做出敏感反应。本综述关注智能高分子材料领域的最新成果。本文介绍了刺激响应性聚合物设计方面的最新进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/3e90e80cdf5f/materials-17-04255-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/079ebee22a83/materials-17-04255-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/2fcdfecd0441/materials-17-04255-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/1111f78bb235/materials-17-04255-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/22b30079e9ef/materials-17-04255-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/dc19ad9f5c0d/materials-17-04255-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/3b82f7fbd885/materials-17-04255-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/8158c94c1e16/materials-17-04255-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/dccc1c086030/materials-17-04255-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/f41253d614e5/materials-17-04255-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/6cf260e5273c/materials-17-04255-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/adb545067227/materials-17-04255-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/586caa2789cb/materials-17-04255-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/7970a50b48ad/materials-17-04255-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/de023d2bfbcb/materials-17-04255-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/866fa1a91315/materials-17-04255-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/691a45c1809a/materials-17-04255-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/11f64aab1060/materials-17-04255-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/82864ab322b7/materials-17-04255-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/6e81220258ad/materials-17-04255-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/db5b84f2a5cc/materials-17-04255-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/cf225af4a50f/materials-17-04255-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/3e90e80cdf5f/materials-17-04255-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/079ebee22a83/materials-17-04255-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/2fcdfecd0441/materials-17-04255-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/1111f78bb235/materials-17-04255-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/22b30079e9ef/materials-17-04255-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/dc19ad9f5c0d/materials-17-04255-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/3b82f7fbd885/materials-17-04255-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/8158c94c1e16/materials-17-04255-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/dccc1c086030/materials-17-04255-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/f41253d614e5/materials-17-04255-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/6cf260e5273c/materials-17-04255-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/adb545067227/materials-17-04255-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/586caa2789cb/materials-17-04255-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/7970a50b48ad/materials-17-04255-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/de023d2bfbcb/materials-17-04255-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/866fa1a91315/materials-17-04255-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/691a45c1809a/materials-17-04255-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/11f64aab1060/materials-17-04255-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/82864ab322b7/materials-17-04255-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/6e81220258ad/materials-17-04255-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/db5b84f2a5cc/materials-17-04255-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/cf225af4a50f/materials-17-04255-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18e/11396725/3e90e80cdf5f/materials-17-04255-g022.jpg

相似文献

[1]
A Comprehensive Review of Stimuli-Responsive Smart Polymer Materials-Recent Advances and Future Perspectives.

Materials (Basel). 2024-8-28

[2]
Natural Polymer-based Stimuli-responsive Hydrogels.

Curr Med Chem. 2020

[3]
Stimuli-Responsive Crystalline Smart Materials: From Rational Design and Fabrication to Applications.

Acc Chem Res. 2022-4-5

[4]
Biomedical applications of stimuli-responsive "smart" interpenetrating polymer network hydrogels.

Mater Today Bio. 2024-2-10

[5]
Recent Advances in Peptides-Based Stimuli-Responsive Materials for Biomedical and Therapeutic Applications: A Review.

Mol Pharm. 2022-7-4

[6]
Smart Actuators and Adhesives for Reconfigurable Matter.

Acc Chem Res. 2017-3-6

[7]
Smart Polymeric Systems: A Biomedical Viewpoint.

Adv Exp Med Biol. 2020

[8]
Application of stimuli-responsive materials for extraction purposes.

J Chromatogr A. 2021-1-11

[9]
Multi-Stimuli-Responsive Polymer Materials: Particles, Films, and Bulk Gels.

Chem Rec. 2016-6

[10]
Stimuli-Responsive Drug Release from Smart Polymers.

J Funct Biomater. 2019-7-31

引用本文的文献

[1]
Smart and Biodegradable Polymers in Tissue Engineering and Interventional Devices: A Brief Review.

Polymers (Basel). 2025-7-18

[2]
Multifunctional Amphiphilic Biocidal Copolymers Based on N-(3-(Dimethylamino)propyl)methacrylamide Exhibiting pH-, Thermo-, and CO-Sensitivity.

Polymers (Basel). 2025-7-9

[3]
Biomimetic Additive Manufacturing: Engineering Complexity Inspired by Nature's Simplicity.

Biomimetics (Basel). 2025-7-10

[4]
Recent Advancements in Smart Hydrogel-Based Materials in Cartilage Tissue Engineering.

Materials (Basel). 2025-5-31

[5]
Recent Advances in Soft Matter.

Materials (Basel). 2025-3-25

[6]
Therapeutic functions of medical implants from various material categories with integrated biomacromolecular systems.

Front Bioeng Biotechnol. 2025-1-10

本文引用的文献

[1]
Harnessing chemical functionality of xylan hemicellulose towards carbohydrate polymer-based pH/magnetic dual-responsive nanocomposite hydrogel for drug delivery.

Carbohydr Polym. 2024-11-1

[2]
Cross-linker engineered poly(hydroxyethyl methacrylate) hydrogel allows photodynamic and photothermal therapies and controlled drug release.

Eur J Pharm Biopharm. 2024-9

[3]
Fostering tissue engineering and regenerative medicine to treat musculoskeletal disorders in bone and muscle.

Bioact Mater. 2024-6-15

[4]
Efficient extraction of textile dyes using reusable acrylic-based smart polymers.

J Hazard Mater. 2024-9-5

[5]
Agriculture 4.0: Polymer Hydrogels as Delivery Agents of Active Ingredients.

Gels. 2024-5-26

[6]
Silicone Bioadhesive with Shear-Stiffening Effect: Rate-Responsive Adhesion Behavior and Wound Dressing Application.

Biomacromolecules. 2024-7-8

[7]
Development of smart adhesive using lanthanide-doped phosphor and carboxymethyl cellulose-reinforced gum Arabic.

Spectrochim Acta A Mol Biomol Spectrosc. 2024-9-5

[8]
Sulfated polysaccharide as biomimetic biopolymers for tissue engineering scaffolds fabrication: Challenges and opportunities.

Carbohydr Polym. 2024-7-15

[9]
MXene/TPU Hybrid Fabrics Enable Smart Wound Management and Thermoresponsive Drug Delivery.

ACS Appl Mater Interfaces. 2024-4-10

[10]
Smart Material for Smarter Dentistry.

J Pharm Bioallied Sci. 2024-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索