文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用纳米颗粒策略抑制关键蛋白克服癌症药物耐药性。

Overcoming Cancer Drug Resistance with Nanoparticle Strategies for Key Protein Inhibition.

机构信息

Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.

出版信息

Molecules. 2024 Aug 23;29(17):3994. doi: 10.3390/molecules29173994.


DOI:10.3390/molecules29173994
PMID:39274842
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11396748/
Abstract

Drug resistance remains a critical barrier in cancer therapy, diminishing the effectiveness of chemotherapeutic, targeted, and immunotherapeutic agents. Overexpression of proteins such as B-cell lymphoma 2 (Bcl-2), inhibitor of apoptosis proteins (IAPs), protein kinase B (Akt), and P-glycoprotein (P-gp) in various cancers leads to resistance by inhibiting apoptosis, enhancing cell survival, and expelling drugs. Although several inhibitors targeting these proteins have been developed, their clinical use is often hampered by systemic toxicity, poor bioavailability, and resistance development. Nanoparticle-based drug delivery systems present a promising solution by improving drug solubility, stability, and targeted delivery. These systems leverage the Enhanced Permeation and Retention (EPR) effect to accumulate in tumor tissues, reducing off-target toxicity and increasing therapeutic efficacy. Co-encapsulation strategies involving anticancer drugs and resistance inhibitors within nanoparticles have shown potential in achieving coordinated pharmacokinetic and pharmacodynamic profiles. This review discusses the mechanisms of drug resistance, the limitations of current inhibitors, and the advantages of nanoparticle delivery systems in overcoming these challenges. By advancing these technologies, we can enhance treatment outcomes and move towards more effective cancer therapies.

摘要

耐药性仍然是癌症治疗中的一个关键障碍,降低了化疗、靶向和免疫治疗药物的疗效。在各种癌症中,B 细胞淋巴瘤 2(Bcl-2)、凋亡抑制蛋白(IAPs)、蛋白激酶 B(Akt)和 P 糖蛋白(P-gp)等蛋白的过度表达会通过抑制细胞凋亡、增强细胞存活和排出药物来导致耐药性。尽管已经开发了几种针对这些蛋白的抑制剂,但由于全身毒性、生物利用度差和耐药性的发展,它们的临床应用常常受到阻碍。基于纳米粒子的药物递送系统通过提高药物的溶解度、稳定性和靶向递送提供了有前途的解决方案。这些系统利用增强的渗透性和保留(EPR)效应在肿瘤组织中积累,减少脱靶毒性并提高治疗效果。将抗癌药物和耐药抑制剂共同包封在纳米粒子内的共包封策略已显示出在实现协调的药代动力学和药效学特征方面的潜力。这篇综述讨论了耐药性的机制、当前抑制剂的局限性以及纳米粒子递送系统在克服这些挑战方面的优势。通过推进这些技术,我们可以提高治疗效果,迈向更有效的癌症治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/11396748/dbe89bbf40ec/molecules-29-03994-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/11396748/ffa65df8ec36/molecules-29-03994-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/11396748/ea898c6f2f41/molecules-29-03994-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/11396748/8bc3d7f73e39/molecules-29-03994-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/11396748/c1a4fc65ec4b/molecules-29-03994-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/11396748/dbe89bbf40ec/molecules-29-03994-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/11396748/ffa65df8ec36/molecules-29-03994-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/11396748/ea898c6f2f41/molecules-29-03994-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/11396748/8bc3d7f73e39/molecules-29-03994-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/11396748/c1a4fc65ec4b/molecules-29-03994-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/11396748/dbe89bbf40ec/molecules-29-03994-g004.jpg

相似文献

[1]
Overcoming Cancer Drug Resistance with Nanoparticle Strategies for Key Protein Inhibition.

Molecules. 2024-8-23

[2]
Nanoparticle-based drug delivery systems with platinum drugs for overcoming cancer drug resistance.

J Mater Chem B. 2021-7-7

[3]
Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors.

Drug Resist Updat. 2020-5

[4]
Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.

Eur J Pharm Biopharm. 2015-6

[5]
Role of integrated cancer nanomedicine in overcoming drug resistance.

Adv Drug Deliv Rev. 2013-7-21

[6]
A folate receptor-targeting nanoparticle minimizes drug resistance in a human cancer model.

ACS Nano. 2011-7-11

[7]
A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer.

Acta Biomater. 2018-6-3

[8]
Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance.

Drug Resist Updat. 2011-2-16

[9]
Integrating natural compounds and nanoparticle-based drug delivery systems: A novel strategy for enhanced efficacy and selectivity in cancer therapy.

Cancer Med. 2024-3

[10]
Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology.

Chin J Cancer. 2012-2

引用本文的文献

[1]
Nanoparticle-Based Delivery Strategies for Combating Drug Resistance in Cancer Therapeutics.

Cancers (Basel). 2025-8-11

[2]
Dual-Action Tocilizumab-Conjugated Cisplatin Nanoparticles Overcome Chemoresistance and Metastasis in Non-Small-Cell Lung Cancer.

Pharmaceutics. 2025-7-21

[3]
TSHR in thyroid cancer: bridging biological insights to targeted strategies.

Eur Thyroid J. 2025-7-3

[4]
Herbal Medicine: Enhancing the Anticancer Potential of Natural Products in Hepatocellular Carcinoma Therapy Through Advanced Drug Delivery Systems.

Pharmaceutics. 2025-5-20

[5]
Nano-Drug Delivery Systems for Bone Metastases: Targeting the Tumor-Bone Microenvironment.

Pharmaceutics. 2025-5-2

[6]
Nanotechnology in cancer treatment: revolutionizing strategies against drug resistance.

Front Bioeng Biotechnol. 2025-4-30

[7]
Emerging nanostructure-based strategies for breast cancer therapy: innovations, challenges, and future directions.

Med Oncol. 2025-4-30

[8]
Progress in Drug Delivery Systems Based on Nanoparticles for Improved Glioblastoma Therapy: Addressing Challenges and Investigating Opportunities.

Cancers (Basel). 2025-2-19

[9]
Surface Functionalization of Nanocarriers with Anti-EGFR Ligands for Cancer Active Targeting.

Nanomaterials (Basel). 2025-1-21

[10]
Energy Metabolism and Stemness and the Role of Lauric Acid in Reversing 5-Fluorouracil Resistance in Colorectal Cancer Cells.

Int J Mol Sci. 2025-1-14

本文引用的文献

[1]
Nano-Delivery of Immunogenic Cell Death Inducers and Immune Checkpoint Blockade Agents: Single-Nanostructure Strategies for Enhancing Immunotherapy.

Pharmaceutics. 2024-6-12

[2]
Multi-functional nanomedicines for combinational cancer immunotherapy that transform cold tumors to hot tumors.

Expert Opin Drug Deliv. 2024-4

[3]
Effective therapy of advanced breast cancer through synergistic anticancer by paclitaxel and P-glycoprotein inhibitor.

Mater Today Bio. 2024-3-19

[4]
Cancer cell-specific and pro-apoptotic SMAC peptide-doxorubicin conjugated prodrug encapsulated aposomes for synergistic cancer immunotherapy.

J Nanobiotechnology. 2024-3-13

[5]
Redefining cancer research for therapeutic breakthroughs.

Br J Cancer. 2024-4

[6]
Therapeutic cancer vaccines: advancements, challenges, and prospects.

Signal Transduct Target Ther. 2023-12-13

[7]
Enzyme-Responsive Branched Glycopolymer-Based Nanoassembly for Co-Delivery of Paclitaxel and Akt Inhibitor toward Synergistic Therapy of Gastric Cancer.

Adv Sci (Weinh). 2024-1

[8]
Current Advances and Future Strategies for BCL-2 Inhibitors: Potent Weapons against Cancers.

Cancers (Basel). 2023-10-12

[9]
Genetics of in Cancer.

Cancers (Basel). 2023-8-24

[10]
Nanoparticle-based drug delivery systems targeting cancer cell surfaces.

RSC Adv. 2023-7-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索