Lin Xuxin, Gan Jianwen, Jiang Chaohao, Xue Shuai, Liang Yanyan
Faculty of Innovation Engineering, Macau University of Science and Technology, Macau 999078, China.
Zhuhai Da Heng Qin Technology Development Co., Ltd., Zhuhai 519000, China.
Sensors (Basel). 2023 Jul 12;23(14):6320. doi: 10.3390/s23146320.
Indoor localization and navigation have become an increasingly important problem in both industry and academia with the widespread use of mobile smart devices and the development of network techniques. The Wi-Fi-based technology shows great potential for applications due to the ubiquitous Wi-Fi infrastructure in public indoor environments. Most existing approaches use trilateration or machine learning methods to predict locations from a set of annotated Wi-Fi observations. However, annotated data are not always readily available. In this paper, we propose a robot-aided data collection strategy to obtain the limited but high-quality labeled data and a large amount of unlabeled data. Furthermore, we design two deep learning models based on a variational autoencoder for the localization and navigation tasks, respectively. To make full use of the collected data, a hybrid learning approach is developed to train the models by combining supervised, unsupervised and semi-supervised learning strategies. Extensive experiments suggest that our approach enables the models to learn effective knowledge from unlabeled data with incremental improvements, and it can achieve promising localization and navigation performance in a complex indoor environment with obstacles.
随着移动智能设备的广泛使用和网络技术的发展,室内定位与导航在工业界和学术界都已成为一个日益重要的问题。基于Wi-Fi的技术由于公共室内环境中普遍存在的Wi-Fi基础设施而展现出巨大的应用潜力。大多数现有方法使用三边测量法或机器学习方法,根据一组带注释的Wi-Fi观测值来预测位置。然而,带注释的数据并非总是容易获取。在本文中,我们提出一种机器人辅助的数据收集策略,以获取有限但高质量的标记数据和大量未标记数据。此外,我们分别基于变分自编码器设计了两个深度学习模型用于定位和导航任务。为了充分利用收集到的数据,我们开发了一种混合学习方法,通过结合监督、无监督和半监督学习策略来训练模型。大量实验表明,我们的方法能使模型从未标记数据中学习有效知识并逐步改进,并且在具有障碍物的复杂室内环境中能够实现良好的定位和导航性能。