Suppr超能文献

利用建筑平面图信息实现房间级自动定位

Automated Room-Level Localisation Using Building Plan Information.

作者信息

Thorsager Mathias, Kroeyer Sune, Taha Adham, Melgaard Magnus, Anil Linette, Nielsen Jimmy, Madsen Tatiana

机构信息

Department of Electronic Systems, Aalborg University, 9220 Aalborg, Denmark.

出版信息

Sensors (Basel). 2024 Sep 4;24(17):5753. doi: 10.3390/s24175753.

Abstract

Building Management Systems (BMSs) are transitioning from utilising wired installations to wireless Internet of Things (IoT) sensors and actuators. This shift introduces the requirement of robust localisation methods which can link the installed sensors to the correct Control Units (CTUs) which will facilitate continued communication. In order to lessen the installation burden on the technicians, the installation process should be made more complicated by the localisation method. We propose an automated version of the fingerprinting-based localisation method which estimates the location of sensors with room-level accuracy. This approach can be used for initialisation and maintenance of BMSs without introducing additional manual labour from the technician installing the sensors. The method is extended to two proposed localisation methods which take advantage of knowledge present in the building plan regarding the distribution of sensors in each room to estimate the location of groups of sensors at the same time. Through tests using a simulation environment based on a Bluetooth-based measurement campaign, the proposed methods showed an improved accuracy from the baseline automated fingerprinting method. The results showed an error rate of 1 in 20 sensors (if the number of sensors per room is known) or as few as 1 per 200 sensors (if a group of sensors are deployed and detected together for one room at a time).

摘要

楼宇管理系统(BMS)正在从使用有线装置向采用无线物联网(IoT)传感器和执行器转变。这种转变带来了对强大定位方法的需求,该方法能够将已安装的传感器与正确的控制单元(CTU)相连接,从而促进持续通信。为了减轻技术人员的安装负担,定位方法不应使安装过程变得更加复杂。我们提出了一种基于指纹识别的自动化定位方法,该方法能够以房间级精度估计传感器的位置。这种方法可用于BMS的初始化和维护,而无需安装传感器的技术人员额外投入人工。该方法扩展为两种定位方法,它们利用建筑平面图中有关每个房间传感器分布的信息,同时估计传感器组的位置。通过基于蓝牙测量活动的模拟环境进行测试,所提出的方法相较于基线自动化指纹识别方法,显示出更高的精度。结果表明,错误率为每20个传感器中有1个(如果每个房间的传感器数量已知),或者低至每200个传感器中有1个(如果一次针对一个房间部署并一起检测一组传感器)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e3e/11397792/55111f01280a/sensors-24-05753-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验