School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
Laboratory of Amyloid Biology and Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russia.
J Biol Chem. 2024 Oct;300(10):107766. doi: 10.1016/j.jbc.2024.107766. Epub 2024 Sep 12.
Liquid protein condensates produced by phase separation are involved in the spatiotemporal control of cellular functions, while solid fibrous aggregates (amyloids) are associated with diseases and/or manifest as infectious or heritable elements (prions). Relationships between these assemblies are poorly understood. The Saccharomyces cerevisiae release factor Sup35 can produce both fluid liquid-like condensates (e.g., at acidic pH) and amyloids (typically cross-seeded by other prions). We observed acidification-independent formation of Sup35-based liquid condensates in response to hyperosmotic shock in the absence of other prions, both at increased and physiological expression levels. The Sup35 prion domain, Sup35N, is both necessary and sufficient for condensate formation, while the middle domain, Sup35M antagonizes this process. Formation of liquid condensates in response to osmotic stress is conserved within yeast evolution. Notably, condensates of Sup35N/NM protein originated from the distantly related yeast Ogataea methanolica can directly convert to amyloids in osmotically stressed S. cerevisiae cells, providing a unique opportunity for real-time monitoring of condensate-to-fibril transition in vivo by fluorescence microscopy. Thus, cellular fate of stress-induced condensates depends on protein properties and/or intracellular environment.
液-液相分离产生的液体蛋白凝聚物参与细胞功能的时空调控,而固态纤维聚集物(淀粉样蛋白)与疾病相关,或表现为感染性或遗传性元件(朊病毒)。这些聚集体之间的关系尚不清楚。酿酒酵母释放因子 Sup35 既能产生液态液体样凝聚物(例如在酸性 pH 下),也能产生淀粉样蛋白(通常由其他朊病毒交叉引发)。我们观察到,在没有其他朊病毒的情况下,高渗冲击会导致 Sup35 依赖的液体凝聚物在酸性依赖之外形成,无论是在高表达水平还是生理表达水平下都是如此。Sup35 朊病毒结构域 Sup35N 对于凝聚物的形成是必需且充分的,而中间结构域 Sup35M 则拮抗这一过程。在酵母进化过程中,对渗透压冲击的液体凝聚物的形成是保守的。值得注意的是,源自亲缘关系较远的酵母 Ogataea methanolica 的 Sup35N/NM 蛋白的凝聚物可以在受到渗透压胁迫的 S. cerevisiae 细胞中直接转化为淀粉样蛋白,这为通过荧光显微镜实时监测体内凝聚物到原纤维的转变提供了独特的机会。因此,应激诱导凝聚物的细胞命运取决于蛋白质特性和/或细胞内环境。