Suppr超能文献

基于边界感知卷积注意力网络的超声图像肝脏分割方法。

Boundary-aware convolutional attention network for liver segmentation in ultrasound images.

机构信息

School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, 221000, China.

Department of Information, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, 225300, China.

出版信息

Sci Rep. 2024 Sep 15;14(1):21529. doi: 10.1038/s41598-024-70527-y.

Abstract

Liver ultrasound is widely used in clinical practice due to its advantages of non-invasiveness, non-radiation, and real-time imaging. Accurate segmentation of the liver region in ultrasound images is essential for accelerating the auxiliary diagnosis of liver-related diseases. This paper proposes BACANet, a deep learning algorithm designed for real-time liver ultrasound segmentation. Our approach utilizes a lightweight network backbone for liver feature extraction and incorporates a convolutional attention mechanism to enhance the network's ability to capture global contextual information. To improve early localization of liver boundaries, we developed a selective large kernel convolution module for boundary feature extraction and introduced explicit liver boundary supervision. Additionally, we designed an enhanced attention gate to efficiently convey liver body and boundary features to the decoder to enhance the feature representation capability. Experimental results across multiple datasets demonstrate that BACANet effectively completes the task of liver ultrasound segmentation, achieving a balance between inference speed and segmentation accuracy. On a public dataset, BACANet achieved a DSC of 0.921 and an IOU of 0.854. On a private test dataset, BACANet achieved a DSC of 0.950 and an IOU of 0.907, with an inference time of approximately 0.32 s per image on a CPU processor.

摘要

肝脏超声由于具有无创、无辐射和实时成像等优点,在临床实践中得到了广泛应用。准确分割超声图像中的肝脏区域对于加速肝脏相关疾病的辅助诊断至关重要。本文提出了 BACANet,这是一种专为实时肝脏超声分割设计的深度学习算法。我们的方法利用轻量级网络骨干进行肝脏特征提取,并结合卷积注意力机制,增强网络捕捉全局上下文信息的能力。为了提高肝脏边界的早期定位能力,我们开发了一种选择性大核卷积模块用于边界特征提取,并引入了明确的肝脏边界监督。此外,我们设计了一个增强的注意力门,以有效地将肝脏体和边界特征传递给解码器,从而增强特征表示能力。在多个数据集上的实验结果表明,BACANet 有效地完成了肝脏超声分割任务,在推理速度和分割精度之间取得了平衡。在一个公共数据集上,BACANet 达到了 DSC 为 0.921 和 IOU 为 0.854。在一个私有测试数据集上,BACANet 达到了 DSC 为 0.950 和 IOU 为 0.907,在 CPU 处理器上每张图像的推理时间约为 0.32 秒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7e1/11403006/674e52ea69d4/41598_2024_70527_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验