Suppr超能文献

通过单细胞测序、机器学习算法和体外实验相结合鉴定缺血性脑卒中的二硫键凋亡相关基因。

Identification of Disulfidptosis-Related Genes in Ischemic Stroke by Combining Single-Cell Sequencing, Machine Learning Algorithms, and In Vitro Experiments.

机构信息

Department of Neurosurgery, The Afliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.

Wuxi Medical Center of Nanjing Medical University, Wuxi, China.

出版信息

Neuromolecular Med. 2024 Sep 15;26(1):39. doi: 10.1007/s12017-024-08804-2.

Abstract

BACKGROUND

Ischemic stroke (IS) is a severe neurological disorder with a pathogenesis that remains incompletely understood. Recently, a novel form of cell death known as disulfidptosis has garnered significant attention in the field of ischemic stroke research. This study aims to investigate the mechanistic roles of disulfidptosis-related genes (DRGs) in the context of IS and to examine their correlation with immunopathological features.

METHODS

To enhance our understanding of the mechanistic underpinnings of disulfidptosis in IS, we initially retrieved the expression profile of peripheral blood from human IS patients from the GEO database. We then utilized a suite of machine learning algorithms, including LASSO, random forest, and SVM-RFE, to identify and validate pivotal genes. Furthermore, we developed a predictive nomogram model, integrating multifactorial logistic regression analysis and calibration curves, to evaluate the risk of IS. For the analysis of single-cell sequencing data, we employed a range of analytical tools, such as "Monocle" and "CellChat," to assess the status of immune cell infiltration and to characterize intercellular communication networks. Additionally, we utilized an oxygen-glucose deprivation (OGD) model to investigate the effects of SLC7A11 overexpression on microglial polarization.

RESULTS

This study successfully identified key genes associated with disulfidptosis and developed a reliable nomogram model using machine learning algorithms to predict the risk of ischemic stroke. Examination of single-cell sequencing data showed a robust correlation between disulfidptosis levels and the infiltration of immune cells. Furthermore, "CellChat" analysis elucidated the intricate characteristics of intercellular communication networks. Notably, the TNF signaling pathway was found to be intimately linked with the disulfidptosis signature in ischemic stroke. In an intriguing finding, the OGD model demonstrated that SLC7A11 expression suppresses M1 polarization while promoting M2 polarization in microglia.

CONCLUSION

The significance of our findings lies in their potential to shed light on the pathogenesis of ischemic stroke, particularly by underscoring the pivotal role of disulfidptosis-related genes (DRGs). These insights could pave the way for novel therapeutic strategies targeting DRGs to mitigate the impact of ischemic stroke.

摘要

背景

缺血性脑卒中(IS)是一种严重的神经系统疾病,其发病机制尚不完全清楚。最近,一种新形式的细胞死亡,称为二硫键细胞死亡(disulfidptosis),在缺血性脑卒中研究领域引起了广泛关注。本研究旨在探讨二硫键细胞死亡相关基因(DRGs)在 IS 中的作用机制,并研究其与免疫病理特征的相关性。

方法

为了深入了解 IS 中二硫键细胞死亡的机制基础,我们首先从 GEO 数据库中检索了人类 IS 患者的外周血表达谱。然后,我们利用一系列机器学习算法,包括 LASSO、随机森林和 SVM-RFE,来识别和验证关键基因。此外,我们还开发了一个预测列线图模型,该模型结合了多因素逻辑回归分析和校准曲线,以评估 IS 的风险。对于单细胞测序数据的分析,我们使用了一系列分析工具,如“Monocle”和“CellChat”,来评估免疫细胞浸润的状态,并描述细胞间通讯网络的特征。此外,我们还利用氧葡萄糖剥夺(OGD)模型研究了 SLC7A11 过表达对小胶质细胞极化的影响。

结果

本研究成功地鉴定了与二硫键细胞死亡相关的关键基因,并利用机器学习算法构建了一个可靠的列线图模型,用于预测缺血性脑卒中的风险。单细胞测序数据的分析表明,二硫键细胞死亡水平与免疫细胞浸润之间存在很强的相关性。此外,“CellChat”分析揭示了细胞间通讯网络的复杂特征。值得注意的是,TNF 信号通路与缺血性脑卒中中二硫键细胞死亡特征密切相关。有趣的是,OGD 模型表明,SLC7A11 表达抑制小胶质细胞 M1 极化,促进 M2 极化。

结论

我们研究结果的意义在于,它们为缺血性脑卒中的发病机制提供了新的认识,特别是强调了二硫键细胞死亡相关基因(DRGs)的关键作用。这些见解可能为针对 DRGs 的新型治疗策略提供思路,以减轻缺血性脑卒中的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eee/11402847/16755fb793ff/12017_2024_8804_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验