Suppr超能文献

用于紫外光驱动视觉系统的仿生柔性和低电压有机突触晶体管。

Bioinspired Flexible and Low-Voltage Organic Synaptic Transistors for UV Light-Driven Vision Systems.

机构信息

Organic Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.

Department of Zoology, Midnapore College, Midnapore 721101, India.

出版信息

ACS Appl Bio Mater. 2024 Oct 21;7(10):6405-6413. doi: 10.1021/acsabm.4c00509. Epub 2024 Sep 16.

Abstract

Neuromorphic vision systems, particularly those stimulated by ultraviolet (UV) light, hold great potential applications in portable electronics, wearable technology, biological analysis, military surveillance, etc. Organic artificial synaptic devices hold immense potential in this field due to their ease of processing, flexibility, and biocompatibility. In this work, we have fabricated a flexible organic field-effect transistor (OFET) that utilizes chitosan-silver nanoparticles (AgNPs) composite material as the active dielectric material. During UV light illumination, both silver nanoparticles and the pentacene layer generate a large number of charge carriers. The photogenerated carriers lead to a more significant hole accumulation at the pentacene interface, resulting in a current rise. In the absence of light, the trapped electron in the silver nanoparticles persists for a longer duration, preventing the instant recombination with holes. This extended retention of electrons leads to the observed synaptic performance of the transistor. The use of aluminum oxide (AlO) as one of the dielectric layers enables the device to operate effectively at low voltage (<1 V). The device mimics various crucial synaptic properties of the brain, including short-term potentiation and long-term potentiation (STP and LTP), paired-pulse facilitation (PPF), spike-duration dependent plasticity (SDDP), spike-number dependent plasticity (SNDP), and spike-rate dependent plasticity (SRDP), etc. This work introduces an approach to develop flexible organic synaptic transistors that operate efficiently at low voltages, paving the way toward high-performance, UV light-driven neuromorphic vision systems.

摘要

神经形态视觉系统,特别是受紫外 (UV) 光刺激的系统,在便携式电子设备、可穿戴技术、生物分析、军事监控等领域具有巨大的应用潜力。有机人工突触器件由于其易于加工、灵活性和生物相容性,在该领域具有巨大的潜力。在这项工作中,我们制造了一种基于壳聚糖-银纳米粒子 (AgNP) 复合材料的柔性有机场效应晶体管 (OFET) 作为有源介电材料。在紫外光照射下,银纳米粒子和并五苯层都会产生大量的电荷载流子。光生载流子导致并五苯界面处的空穴积累更多,从而使电流上升。在没有光的情况下,银纳米粒子中的捕获电子会持续更长时间,防止与空穴的即时复合。这种电子的延长保留导致了晶体管的观察到的突触性能。使用氧化铝 (AlO) 作为介电层之一,使该器件能够在低电压(<1V)下有效运行。该器件模拟了大脑的各种关键突触特性,包括短期增强和长期增强(STP 和 LTP)、成对脉冲促进(PPF)、脉冲持续时间依赖性可塑性(SDDP)、脉冲数量依赖性可塑性(SNDP)和脉冲率依赖性可塑性(SRDP)等。这项工作介绍了一种开发高效低电压柔性有机突触晶体管的方法,为高性能、UV 光驱动的神经形态视觉系统铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验