Rehman Shania, Khan Muhammad Farooq, Rahmani Mehr Khalid, Kim Honggyun, Patil Harshada, Khan Sobia Ali, Kang Moon Hee, Kim Deok-Kee
Department of Electrical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea.
School of electronics Engineering, Chungbuk National University, Cheongju 28644, Korea.
Nanomaterials (Basel). 2020 Nov 24;10(12):2326. doi: 10.3390/nano10122326.
The diversity of brain functions depend on the release of neurotransmitters in chemical synapses. The back gated three terminal field effect transistors (FETs) are auspicious candidates for the emulation of biological functions to recognize the proficient neuromorphic computing systems. In order to encourage the hysteresis loops, we treated the bottom side of MoTe flake with deep ultraviolet light in ambient conditions. Here, we modulate the short-term and long-term memory effects due to the trapping and de-trapping of electron events in few layers of a MoTe transistor. However, MoTe FETs are investigated to reveal the time constants of electron trapping/de-trapping while applying the gate-voltage pulses. Our devices exploit the hysteresis effect in the transfer curves of MoTe FETs to explore the excitatory/inhibitory post-synaptic currents (EPSC/IPSC), long-term potentiation (LTP), long-term depression (LTD), spike timing/amplitude-dependent plasticity (STDP/SADP), and paired pulse facilitation (PPF). Further, the time constants for potentiation and depression is found to be 0.6 and 0.9 s, respectively which seems plausible for biological synapses. In addition, the change of synaptic weight in MoTe conductance is found to be 41% at negative gate pulse and 38% for positive gate pulse, respectively. Our findings can provide an essential role in the advancement of smart neuromorphic electronics.
大脑功能的多样性取决于化学突触中神经递质的释放。背栅三端场效应晶体管(FET)是用于模拟生物功能以实现高效神经形态计算系统的理想候选者。为了增强滞后回线,我们在环境条件下用深紫外光处理了碲化钼薄片的底面。在此,我们通过碲化钼晶体管几层中电子事件的俘获和去俘获来调制短期和长期记忆效应。然而,在施加栅极电压脉冲时,对碲化钼FET进行了研究以揭示电子俘获/去俘获的时间常数。我们的器件利用碲化钼FET传输曲线中的滞后效应来探索兴奋性/抑制性突触后电流(EPSC/IPSC)、长时程增强(LTP)、长时程抑制(LTD)、峰电位时间/幅度依赖性可塑性(STDP/SADP)以及双脉冲易化(PPF)。此外,发现增强和抑制的时间常数分别为0.6秒和0.9秒,这对于生物突触来说似乎是合理的。另外,在负栅极脉冲下碲化钼电导率的突触权重变化分别为41%,正栅极脉冲下为38%。我们的发现可为智能神经形态电子学的发展发挥重要作用。