Suppr超能文献

具有新型电子俘获层的光子突触晶体管,实现高性能和超低功耗。

Photonic synaptic transistors with new electron trapping layer for high performance and ultra-low power consumption.

作者信息

Kim Taewoo, Yun Kwang-Seok

机构信息

Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea.

出版信息

Sci Rep. 2023 Aug 3;13(1):12583. doi: 10.1038/s41598-023-39646-w.

Abstract

Photonic synaptic transistors are being investigated for their potential applications in neuromorphic computing and artificial vision systems. Recently, a method for establishing a synaptic effect by preventing the recombination of electron-hole pairs by forming an energy barrier with a double-layer consisting of a channel and a light absorption layer has shown effective results. We report a triple-layer device created by coating a novel electron-trapping layer between the light-absorption layer and the gate-insulating layer. Compared to the conventional double-layer photonic synaptic structure, our triple-layer device significantly reduces the recombination rate, resulting in improved performance in terms of the output photocurrent and memory characteristics. Furthermore, our photonic synaptic transistor possesses excellent synaptic properties, such as paired-pulse facilitation (PPF), short-term potentiation (STP), and long-term potentiation (LTP), and demonstrates a good response to a low operating voltage of - 0.1 mV. The low power consumption experiment shows a very low energy consumption of 0.01375 fJ per spike. These findings suggest a way to improve the performance of future neuromorphic devices and artificial vision systems.

摘要

光子突触晶体管因其在神经形态计算和人工视觉系统中的潜在应用而受到研究。最近,一种通过用由沟道和光吸收层组成的双层形成能垒来防止电子 - 空穴对复合从而建立突触效应的方法已显示出有效结果。我们报告了一种通过在光吸收层和栅极绝缘层之间涂覆新型电子俘获层而制成的三层器件。与传统的双层光子突触结构相比,我们的三层器件显著降低了复合率,从而在输出光电流和记忆特性方面提高了性能。此外,我们的光子突触晶体管具有优异的突触特性,如双脉冲易化(PPF)、短期增强(STP)和长期增强(LTP),并且在 - 0.1 mV的低工作电压下表现出良好的响应。低功耗实验表明每个尖峰的能量消耗非常低,仅为0.01375 fJ。这些发现为提高未来神经形态器件和人工视觉系统的性能提供了一种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83e6/10400596/26e81df6c12c/41598_2023_39646_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验