Austrian Centre of Industrial Biotechnology, Graz, Austria.
Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Graz University of Technology, Graz, Austria.
Biotechnol Bioeng. 2022 Sep;119(9):2374-2387. doi: 10.1002/bit.28130. Epub 2022 May 16.
While O substrate for bio-transformations in bulk liquid is routinely provided from entrained air or O gas, tailored solutions of O supply are required when the bio-catalysis happens spatially confined to the microstructure of a solid support. Release of soluble O from H O by catalase is promising, but spatiotemporal control of the process is challenging to achieve. Here, we show monitoring and control by optical sensing within a porous carrier of the soluble O formed by an immobilized catalase upon feeding of H O . The internally released O is used to drive the reaction of d-amino acid oxidase (oxidation of d-methionine) that is co-immobilized with the catalase in the same carrier. The H O is supplied in portions at properly timed intervals, or continuously at controlled flow rate, to balance the O production and consumption inside the carrier so as to maintain the internal O concentration in the range of 100-500 µM. Thus, enzyme inactivation by excess H O is prevented and gas formation from the released O is avoided at the same time. The reaction rate of the co-immobilized enzyme preparation is shown to depend linearly on the internal O concentration up to the air-saturated level. Conversions at a 200 ml scale using varied H O feed rate (0.04-0.18 mmol/min) give the equivalent production rate from d-methionine (200 mM) and achieve rate enhancement by ∼1.55-fold compared to the same oxidase reaction under bubble aeration. Collectively, these results show an integrated strategy of biomolecular engineering for tightly controlled supply of O substrate from H O into carrier-immobilized enzymes. By addressing limitations of O supply via gas-liquid transfer, especially at the microscale, this can be generally useful to develop specialized process strategies for O -dependent biocatalytic reactions.
虽然在批量液体中生物转化的 O 基质通常由夹带的空气或 O2 提供,但当生物催化空间局限于固体载体的微观结构时,需要定制的 O 供应解决方案。过氧化氢中溶解 O2 通过过氧化氢酶的释放有很大的前景,但该过程的时空控制很难实现。在这里,我们展示了在多孔载体中通过光学传感对固定化过氧化氢酶在 H2O2 进料时形成的溶解 O2 的监测和控制。内部释放的 O2 用于驱动同时固定在载体中的 d-氨基酸氧化酶(d-蛋氨酸氧化)的反应。H2O2 以适当的时间间隔分批供应,或连续以控制的流速供应,以平衡载体内部的 O2 产生和消耗,从而将载体内部的 O2 浓度维持在 100-500μM 范围内。因此,防止了过量 H2O2 对酶的失活,并同时避免了释放的 O2 形成气体。结果表明,共固定化酶制剂的反应速率与内部 O2 浓度呈线性关系,直到达到空气饱和水平。使用不同的 H2O2 进料速率(0.04-0.18mmol/min)在 200ml 规模上进行反应,得到了从 d-蛋氨酸(200mM)的等效生产速率,并与在气泡曝气下相同的氧化酶反应相比,实现了约 1.55 倍的速率增强。总的来说,这些结果展示了一种用于从 H2O2 到载体固定化酶中紧密控制 O 基质供应的生物分子工程综合策略。通过解决气液传质的 O 供应限制,特别是在微尺度上,可以为 O 依赖性生物催化反应开发专门的工艺策略提供一般的有用性。