Suppr超能文献

基于Swin-Unet的自动黑质分割在磁敏感加权成像和T2加权成像中的应用:用于帕金森病诊断

Automatic substantia nigra segmentation with Swin-Unet in susceptibility- and T2-weighted imaging: application to Parkinson disease diagnosis.

作者信息

Wang Tongxing, Wang Yajing, Zhu Haichen, Liu Zhen, Chen Yu-Chen, Wang Liwei, Duan Shaofeng, Yin Xindao, Jiang Liang

机构信息

Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.

Lab of Image Science and Technology, Key Laboratory of Computer Network and Information Integration (Ministry of Education), School of Computer Science and Engineering, Southeast University, Nanjing, China.

出版信息

Quant Imaging Med Surg. 2024 Sep 1;14(9):6337-6351. doi: 10.21037/qims-24-27. Epub 2024 Aug 21.

Abstract

BACKGROUND

Accurately distinguishing between Parkinson disease (PD) and healthy controls (HCs) through reliable imaging method is crucial for appropriate therapeutic intervention. However, PD diagnosis is hindered by the subjective nature of the evaluation. We aimed to develop an automatic deep-learning method that can segment the substantia nigra areas on susceptibility-weighted imaging (SWI) and T2-weighted imaging (T2WI) and further differentiate patients with PD from HCs using a machine learning algorithm.

METHODS

Magnetic resonance imaging (MRI) data from 83 patients with PD and 83 age- and sex-matched HCs were obtained on the same 3.0-T MRI scanner. A deep learning method with Swin-Unet was developed to segment volumes of interest (VOIs) on SWI and then map the VOIs on SWI to the corresponding T2WI; features were then extracted from the VOIs on SWI and T2WI. Three machine learning models were developed and compared to differentiate those with PD from HCs.

RESULTS

Swin-Unet achieved a better Dice coefficient than did U-Net in SWI segmentation (0.832 . 0.712). Machine learning models outperformed visual analysis (P>0.05), and logistic regression (LR) achieved the best performance [area under the curve (AUC) ≥0.819] and the most stable (relative standard deviations in AUC ≤0.05). The test results showed that the AUC of the LR model based on SWI segmentation was 0.894 while that of the LR model based on T2WI segmentation was 0.876. There was no significant difference in VOIs based on manual labeling or automatic segmentation across T2WI, SWI, or a combination of the two (P>0.05). The AUCs of the LR model based on automatic segmentation were close to those of the model based on manual labeling (P>0.05).

CONCLUSIONS

Our approach could provide a powerful and useful method for automatically and rapidly diagnosing PD in the clinic with only T2WI.

摘要

背景

通过可靠的成像方法准确区分帕金森病(PD)和健康对照(HC)对于适当的治疗干预至关重要。然而,PD诊断受到评估主观性的阻碍。我们旨在开发一种自动深度学习方法,该方法可以在磁敏感加权成像(SWI)和T2加权成像(T2WI)上分割黑质区域,并使用机器学习算法进一步区分PD患者和HC。

方法

在同一台3.0-T MRI扫描仪上获取了83例PD患者和83例年龄及性别匹配的HC的磁共振成像(MRI)数据。开发了一种基于Swin-Unet的深度学习方法,以在SWI上分割感兴趣体积(VOI),然后将SWI上的VOI映射到相应的T2WI;随后从SWI和T2WI上的VOI中提取特征。开发并比较了三种机器学习模型,以区分PD患者和HC。

结果

在SWI分割中,Swin-Unet的Dice系数优于U-Net(0.832对0.712)。机器学习模型的表现优于视觉分析(P>0.05),逻辑回归(LR)表现最佳[曲线下面积(AUC)≥0.819]且最稳定(AUC的相对标准差≤0.05)。测试结果表明,基于SWI分割的LR模型的AUC为0.894,而基于T2WI分割的LR模型的AUC为0.876。基于手动标记或自动分割的T2WI、SWI或两者组合的VOI之间无显著差异(P>0.05)。基于自动分割的LR模型的AUC与基于手动标记的模型接近(P>0.05)。

结论

我们的方法可以为临床中仅使用T2WI自动快速诊断PD提供一种强大且有用的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39f0/11400694/ddbc1de26d9e/qims-14-09-6337-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验