利用常规磁共振成像进行帕金森病的早期筛查:一项使用T2加权液体衰减反转恢复成像的多中心机器学习研究。

Harnessing routine MRI for the early screening of Parkinson's disease: a multicenter machine learning study using T2-weighted FLAIR imaging.

作者信息

Fu Junyan, Chen Hongyi, Xu Chengling, Jia Zhongzheng, Lu Qingqing, Zhang Haiyan, Hu Yue, Lv Kun, Zhang Jun, Geng Daoying

机构信息

Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.

Academy for Engineering and Technology, Fudan University, Shanghai, China.

出版信息

Insights Imaging. 2025 Apr 26;16(1):92. doi: 10.1186/s13244-025-01961-3.

Abstract

OBJECTIVE

To explore the potential of radiomics features derived from T2-weighted fluid-attenuated inversion recovery (T2W FLAIR) images to distinguish idiopathic Parkinson's disease (PD) patients from healthy controls (HCs).

METHODS

T2W FLAIR images from 1727 subjects were retrospectively obtained from five cohorts and divided into a training set (395 PD/574 HC), an internal test set (99 PD/144 HC) and an external test set (295 PD/220 HC). Regions of interest (ROIs), including bilateral globus pallidus (GP), putamen (PU), substantia nigra (SN), and red nucleus (RN), were manually delineated. The radiomics features were extracted from ROIs. Six independent machine learning (ML) classifiers were trained on the training set, and validated on the internal and external test sets.

RESULTS

A selection of five, two, three, and ten highly correlated diagnostic features were identified from SN, RN, GP, and PU regions, respectively. Six ML classifiers were implemented based on the combined 20 radiomics features. In the internal test cohort, the six models achieved AUC of 0.96-0.98 with the accuracy ranging from 0.80 to 0.90. In the external test cohort, the multilayer perceptron model demonstrated the highest AUC of 0.85 (95% CI: 0.80-0.89) with an accuracy of 0.78.

CONCLUSION

ML models based on the conventional T2W FLAIR images demonstrated promising diagnostic performance for PD and those models may serve as a basis for future investigations on PD diagnosis with the aid of ML methods.

CRITICAL RELEVANCE STATEMENT

Our study confirmed that early screening of Parkinson's Disease based on the conventional T2W FLAIR images was feasible with the aid of machine learning algorithms in a large multicenter cohort and those models had certain generalization.

KEY POINTS

Conventional head MRI is routinely performed in Parkinson's disease (PD) but exhibits inadequate specificity for diagnosis. Machine learning (ML) models based on conventional T2W FLAIR images showed favorable accuracy for PD diagnosis. ML algorithm enables early screening of PD on routine T2W FLAIR sequence.

摘要

目的

探讨从T2加权液体衰减反转恢复(T2W FLAIR)图像中提取的放射组学特征区分特发性帕金森病(PD)患者与健康对照(HC)的潜力。

方法

回顾性收集来自五个队列的1727名受试者的T2W FLAIR图像,并分为训练集(395例PD/574例HC)、内部测试集(99例PD/144例HC)和外部测试集(295例PD/220例HC)。手动勾勒感兴趣区域(ROI),包括双侧苍白球(GP)、壳核(PU)、黑质(SN)和红核(RN)。从ROI中提取放射组学特征。在训练集上训练六个独立的机器学习(ML)分类器,并在内部和外部测试集上进行验证。

结果

分别从SN、RN、GP和PU区域中确定了五个、两个、三个和十个高度相关的诊断特征。基于20个组合放射组学特征实施了六个ML分类器。在内部测试队列中,六个模型的AUC为0.96 - 0.98,准确率为0.80至0.90。在外部测试队列中,多层感知器模型的AUC最高,为0.85(95%CI:0.80 - 0.89),准确率为0.78。

结论

基于传统T2W FLAIR图像的ML模型在PD诊断中表现出有前景的诊断性能,这些模型可为未来借助ML方法进行PD诊断的研究提供基础。

关键相关性声明

我们的研究证实,在大型多中心队列中借助机器学习算法基于传统T2W FLAIR图像对帕金森病进行早期筛查是可行的,且这些模型具有一定的泛化性。

要点

帕金森病(PD)患者通常会进行常规头部MRI检查,但诊断特异性不足。基于传统T2W FLAIR图像的机器学习(ML)模型在PD诊断中显示出良好的准确性。ML算法能够在常规T2W FLAIR序列上对PD进行早期筛查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6341/12033128/890c89b8c3c8/13244_2025_1961_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索