Suppr超能文献

基于任务的功能磁共振成像中用于合成数据增强的序列信息学习

Learning Sequential Information in Task-based fMRI for Synthetic Data Augmentation.

作者信息

Wang Jiyao, Dvornek Nicha C, Staib Lawrence H, Duncan James S

机构信息

Biomedical Engineering, Yale University, New Haven, CT 06511, USA.

Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06511, USA.

出版信息

Mach Learn Clin Neuroimaging (2023). 2023 Oct;14312:79-88. doi: 10.1007/978-3-031-44858-4_8. Epub 2023 Oct 1.

Abstract

Insufficiency of training data is a persistent issue in medical image analysis, especially for task-based functional magnetic resonance images (fMRI) with spatio-temporal imaging data acquired using specific cognitive tasks. In this paper, we propose an approach for generating synthetic fMRI sequences that can then be used to create augmented training datasets in downstream learning tasks. To synthesize high-resolution task-specific fMRI, we adapt the -GAN structure, leveraging advantages of both GAN and variational autoencoder models, and propose different alternatives in aggregating temporal information. The synthetic images are evaluated from multiple perspectives including visualizations and an autism spectrum disorder (ASD) classification task. The results show that the synthetic task-based fMRI can provide effective data augmentation in learning the ASD classification task.

摘要

训练数据不足是医学图像分析中一个长期存在的问题,特别是对于基于任务的功能磁共振成像(fMRI),其使用特定认知任务获取时空成像数据。在本文中,我们提出了一种生成合成fMRI序列的方法,该序列随后可用于在下游学习任务中创建增强训练数据集。为了合成高分辨率的特定任务fMRI,我们采用了-GAN结构,利用GAN和变分自编码器模型的优势,并在聚合时间信息方面提出了不同的替代方案。从包括可视化和自闭症谱系障碍(ASD)分类任务在内的多个角度对合成图像进行了评估。结果表明,基于合成任务的fMRI可以在学习ASD分类任务中提供有效的数据增强。

相似文献

7
Learning brain representation using recurrent Wasserstein generative adversarial net.利用递归 Wasserstein 生成对抗网络学习大脑表征。
Comput Methods Programs Biomed. 2022 Aug;223:106979. doi: 10.1016/j.cmpb.2022.106979. Epub 2022 Jun 27.

本文引用的文献

3
Automated anatomical labelling atlas 3.自动解剖学标注图谱 3.
Neuroimage. 2020 Feb 1;206:116189. doi: 10.1016/j.neuroimage.2019.116189. Epub 2019 Sep 12.
4
3D-CNN based discrimination of schizophrenia using resting-state fMRI.基于 3D-CNN 的静息态 fMRI 鉴别精神分裂症。
Artif Intell Med. 2019 Jul;98:10-17. doi: 10.1016/j.artmed.2019.06.003. Epub 2019 Jun 22.
7
Neural signatures of autism.自闭症的神经特征。
Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):21223-8. doi: 10.1073/pnas.1010412107. Epub 2010 Nov 15.
8
Long short-term memory.长短期记忆
Neural Comput. 1997 Nov 15;9(8):1735-80. doi: 10.1162/neco.1997.9.8.1735.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验