Wang Jiyao, Dvornek Nicha C, Staib Lawrence H, Duncan James S
Biomedical Engineering, Yale University, New Haven, CT 06511, USA.
Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06511, USA.
Mach Learn Clin Neuroimaging (2023). 2023 Oct;14312:79-88. doi: 10.1007/978-3-031-44858-4_8. Epub 2023 Oct 1.
Insufficiency of training data is a persistent issue in medical image analysis, especially for task-based functional magnetic resonance images (fMRI) with spatio-temporal imaging data acquired using specific cognitive tasks. In this paper, we propose an approach for generating synthetic fMRI sequences that can then be used to create augmented training datasets in downstream learning tasks. To synthesize high-resolution task-specific fMRI, we adapt the -GAN structure, leveraging advantages of both GAN and variational autoencoder models, and propose different alternatives in aggregating temporal information. The synthetic images are evaluated from multiple perspectives including visualizations and an autism spectrum disorder (ASD) classification task. The results show that the synthetic task-based fMRI can provide effective data augmentation in learning the ASD classification task.
训练数据不足是医学图像分析中一个长期存在的问题,特别是对于基于任务的功能磁共振成像(fMRI),其使用特定认知任务获取时空成像数据。在本文中,我们提出了一种生成合成fMRI序列的方法,该序列随后可用于在下游学习任务中创建增强训练数据集。为了合成高分辨率的特定任务fMRI,我们采用了-GAN结构,利用GAN和变分自编码器模型的优势,并在聚合时间信息方面提出了不同的替代方案。从包括可视化和自闭症谱系障碍(ASD)分类任务在内的多个角度对合成图像进行了评估。结果表明,基于合成任务的fMRI可以在学习ASD分类任务中提供有效的数据增强。