Suppr超能文献

BLENDS:基于解剖约束变形的机器学习功能磁共振图像增强。

BLENDS: Augmentation of Functional Magnetic Resonance Images for Machine Learning Using Anatomically Constrained Warping.

机构信息

Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

Department of Neuroscience, University of Texas at Dallas, Dallas, Texas, USA.

出版信息

Brain Connect. 2023 Mar;13(2):80-88. doi: 10.1089/brain.2021.0186. Epub 2022 Nov 4.

Abstract

Data augmentation improves the accuracy of deep learning models when training data are scarce by synthesizing additional samples. This work addresses the lack of validated augmentation methods specific for synthesizing anatomically realistic four-dimensional (4D) (three-dimensional [3D] + time) images for neuroimaging, such as functional magnetic resonance imaging (fMRI), by proposing a new augmentation method. The proposed method, Brain Library Enrichment through Nonlinear Deformation Synthesis (BLENDS), generates new nonlinear warp fields by combining intersubject coregistration maps, computed using symmetric normalization, through spatial blending. These new warp fields can be applied to existing 4D fMRI to create new augmented images. BLENDS was tested on two neuroimaging problems using de-identified data sets: (1) the prediction of antidepressant response from task-based fMRI (original data set  = 163), and (2) the prediction of Parkinson's disease (PD) symptom trajectory from baseline resting-state fMRI regional homogeneity (original data set  = 43). BLENDS readily generates hundreds of new fMRI from existing images, with unique anatomical variations from the source images, that significantly improve prediction performance. For antidepressant response prediction, augmenting each original image once (2 × the original training data) significantly increased prediction from 0.055 to 0.098 (), whereas at 10 × augmentation increased to 0.103. For the prediction of PD trajectory, 10 × augmentation increased from -0.044 to 0.472 (). Augmentation of fMRI through nonlinear transformations with BLENDS significantly improved the performance of deep learning models on clinically relevant predictive tasks. This method will help neuroimaging researchers overcome data set size limitations and achieve more accurate predictive models.

摘要

数据增强通过合成额外的样本,可以提高训练数据稀缺时深度学习模型的准确性。这项工作针对缺乏经过验证的特定于神经影像学的合成解剖学逼真的四维(4D)(三维[3D]+时间)图像的增强方法,提出了一种新的增强方法。该方法名为通过非线性变形合成增强脑库(Brain Library Enrichment through Nonlinear Deformation Synthesis,BLENDS),通过空间混合,将使用对称归一化计算的受试者间配准图组合在一起,生成新的非线性变形场。这些新的变形场可以应用于现有的 4D fMRI 来创建新的增强图像。BLENDS 使用去识别数据集在两个神经影像学问题上进行了测试:(1)基于任务的 fMRI 预测抗抑郁药反应(原始数据集=163);(2)从基线静息态 fMRI 区域同质性预测帕金森病(PD)症状轨迹(原始数据集=43)。BLENDS 可以从现有图像中轻松生成数百个新的 fMRI,具有与源图像不同的独特解剖学变化,从而显著提高预测性能。对于抗抑郁药反应预测,将每个原始图像增强一次(原始训练数据的 2 倍),预测性能从 0.055 显著提高到 0.098(),而在 10 倍增强时提高到 0.103。对于 PD 轨迹预测,10 倍增强从-0.044 提高到 0.472()。通过 BLENDS 进行非线性变换的 fMRI 增强显著提高了深度学习模型在临床相关预测任务上的性能。该方法将帮助神经影像学研究人员克服数据集大小的限制,实现更准确的预测模型。

相似文献

9
Learning brain representation using recurrent Wasserstein generative adversarial net.利用递归 Wasserstein 生成对抗网络学习大脑表征。
Comput Methods Programs Biomed. 2022 Aug;223:106979. doi: 10.1016/j.cmpb.2022.106979. Epub 2022 Jun 27.
10
A semi-supervised classification RBM with an improved fMRI representation algorithm.一种基于半监督分类 RBM 的改进 fMRI 表示算法。
Comput Methods Programs Biomed. 2022 Jul;222:106960. doi: 10.1016/j.cmpb.2022.106960. Epub 2022 Jun 17.

本文引用的文献

7
Cross-validation failure: Small sample sizes lead to large error bars.交叉验证失败:样本量小导致误差幅度大。
Neuroimage. 2018 Oct 15;180(Pt A):68-77. doi: 10.1016/j.neuroimage.2017.06.061. Epub 2017 Jun 24.
9
Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines.评估与调整大脑解码器:交叉验证、注意事项及指南
Neuroimage. 2017 Jan 15;145(Pt B):166-179. doi: 10.1016/j.neuroimage.2016.10.038. Epub 2016 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验