Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Department of Neuroscience, University of Texas at Dallas, Dallas, Texas, USA.
Brain Connect. 2023 Mar;13(2):80-88. doi: 10.1089/brain.2021.0186. Epub 2022 Nov 4.
Data augmentation improves the accuracy of deep learning models when training data are scarce by synthesizing additional samples. This work addresses the lack of validated augmentation methods specific for synthesizing anatomically realistic four-dimensional (4D) (three-dimensional [3D] + time) images for neuroimaging, such as functional magnetic resonance imaging (fMRI), by proposing a new augmentation method. The proposed method, Brain Library Enrichment through Nonlinear Deformation Synthesis (BLENDS), generates new nonlinear warp fields by combining intersubject coregistration maps, computed using symmetric normalization, through spatial blending. These new warp fields can be applied to existing 4D fMRI to create new augmented images. BLENDS was tested on two neuroimaging problems using de-identified data sets: (1) the prediction of antidepressant response from task-based fMRI (original data set = 163), and (2) the prediction of Parkinson's disease (PD) symptom trajectory from baseline resting-state fMRI regional homogeneity (original data set = 43). BLENDS readily generates hundreds of new fMRI from existing images, with unique anatomical variations from the source images, that significantly improve prediction performance. For antidepressant response prediction, augmenting each original image once (2 × the original training data) significantly increased prediction from 0.055 to 0.098 (), whereas at 10 × augmentation increased to 0.103. For the prediction of PD trajectory, 10 × augmentation increased from -0.044 to 0.472 (). Augmentation of fMRI through nonlinear transformations with BLENDS significantly improved the performance of deep learning models on clinically relevant predictive tasks. This method will help neuroimaging researchers overcome data set size limitations and achieve more accurate predictive models.
数据增强通过合成额外的样本,可以提高训练数据稀缺时深度学习模型的准确性。这项工作针对缺乏经过验证的特定于神经影像学的合成解剖学逼真的四维(4D)(三维[3D]+时间)图像的增强方法,提出了一种新的增强方法。该方法名为通过非线性变形合成增强脑库(Brain Library Enrichment through Nonlinear Deformation Synthesis,BLENDS),通过空间混合,将使用对称归一化计算的受试者间配准图组合在一起,生成新的非线性变形场。这些新的变形场可以应用于现有的 4D fMRI 来创建新的增强图像。BLENDS 使用去识别数据集在两个神经影像学问题上进行了测试:(1)基于任务的 fMRI 预测抗抑郁药反应(原始数据集=163);(2)从基线静息态 fMRI 区域同质性预测帕金森病(PD)症状轨迹(原始数据集=43)。BLENDS 可以从现有图像中轻松生成数百个新的 fMRI,具有与源图像不同的独特解剖学变化,从而显著提高预测性能。对于抗抑郁药反应预测,将每个原始图像增强一次(原始训练数据的 2 倍),预测性能从 0.055 显著提高到 0.098(),而在 10 倍增强时提高到 0.103。对于 PD 轨迹预测,10 倍增强从-0.044 提高到 0.472()。通过 BLENDS 进行非线性变换的 fMRI 增强显著提高了深度学习模型在临床相关预测任务上的性能。该方法将帮助神经影像学研究人员克服数据集大小的限制,实现更准确的预测模型。