Nguyen Kevin P, Fatt Cherise Chin, Treacher Alex, Mellema Cooper, Trivedi Madhukar H, Montillo Albert
University of Texas Southwestern Medical Center, Dallas, TX, USA.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11313. doi: 10.1117/12.2548630. Epub 2020 Mar 10.
The application of deep learning to build accurate predictive models from functional neuroimaging data is often hindered by limited dataset sizes. Though data augmentation can help mitigate such training obstacles, most data augmentation methods have been developed for natural images as in computer vision tasks such as CIFAR, not for medical images. This work helps to fills in this gap by proposing a method for generating new functional Magnetic Resonance Images (fMRI) with realistic brain morphology. This method is tested on a challenging task of predicting antidepressant treatment response from pre-treatment task-based fMRI and demonstrates a 26% improvement in performance in predicting response using augmented images. This improvement compares favorably to state-of-the-art augmentation methods for natural images. Through an ablative test, augmentation is also shown to substantively improve performance when applied before hyperparameter optimization. These results suggest the optimal order of operations and support the role of data augmentation method for improving predictive performance in tasks using fMRI.
将深度学习应用于从功能性神经影像数据构建准确的预测模型,常常受到数据集规模有限的阻碍。尽管数据增强有助于缓解此类训练障碍,但大多数数据增强方法是针对自然图像开发的,比如计算机视觉任务(如CIFAR)中的自然图像,而非医学图像。这项工作通过提出一种生成具有逼真脑形态的新功能性磁共振成像(fMRI)的方法,填补了这一空白。该方法在一项具有挑战性的任务上进行了测试,即根据基于任务的预处理fMRI预测抗抑郁治疗反应,结果表明,使用增强图像预测反应的性能提高了26%。与自然图像的先进增强方法相比,这一改进效果显著。通过消融测试还表明,在进行超参数优化之前应用增强,也能实质性地提高性能。这些结果表明了最佳操作顺序,并支持数据增强方法在使用fMRI的任务中提高预测性能的作用。