Suppr超能文献

用于功能磁共振成像的解剖学信息数据增强及其在深度学习中的应用

Anatomically-Informed Data Augmentation for Functional MRI with Applications to Deep Learning.

作者信息

Nguyen Kevin P, Fatt Cherise Chin, Treacher Alex, Mellema Cooper, Trivedi Madhukar H, Montillo Albert

机构信息

University of Texas Southwestern Medical Center, Dallas, TX, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2020 Feb;11313. doi: 10.1117/12.2548630. Epub 2020 Mar 10.

Abstract

The application of deep learning to build accurate predictive models from functional neuroimaging data is often hindered by limited dataset sizes. Though data augmentation can help mitigate such training obstacles, most data augmentation methods have been developed for natural images as in computer vision tasks such as CIFAR, not for medical images. This work helps to fills in this gap by proposing a method for generating new functional Magnetic Resonance Images (fMRI) with realistic brain morphology. This method is tested on a challenging task of predicting antidepressant treatment response from pre-treatment task-based fMRI and demonstrates a 26% improvement in performance in predicting response using augmented images. This improvement compares favorably to state-of-the-art augmentation methods for natural images. Through an ablative test, augmentation is also shown to substantively improve performance when applied before hyperparameter optimization. These results suggest the optimal order of operations and support the role of data augmentation method for improving predictive performance in tasks using fMRI.

摘要

将深度学习应用于从功能性神经影像数据构建准确的预测模型,常常受到数据集规模有限的阻碍。尽管数据增强有助于缓解此类训练障碍,但大多数数据增强方法是针对自然图像开发的,比如计算机视觉任务(如CIFAR)中的自然图像,而非医学图像。这项工作通过提出一种生成具有逼真脑形态的新功能性磁共振成像(fMRI)的方法,填补了这一空白。该方法在一项具有挑战性的任务上进行了测试,即根据基于任务的预处理fMRI预测抗抑郁治疗反应,结果表明,使用增强图像预测反应的性能提高了26%。与自然图像的先进增强方法相比,这一改进效果显著。通过消融测试还表明,在进行超参数优化之前应用增强,也能实质性地提高性能。这些结果表明了最佳操作顺序,并支持数据增强方法在使用fMRI的任务中提高预测性能的作用。

相似文献

1
Anatomically-Informed Data Augmentation for Functional MRI with Applications to Deep Learning.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11313. doi: 10.1117/12.2548630. Epub 2020 Mar 10.
2
BLENDS: Augmentation of Functional Magnetic Resonance Images for Machine Learning Using Anatomically Constrained Warping.
Brain Connect. 2023 Mar;13(2):80-88. doi: 10.1089/brain.2021.0186. Epub 2022 Nov 4.
3
A review of medical image data augmentation techniques for deep learning applications.
J Med Imaging Radiat Oncol. 2021 Aug;65(5):545-563. doi: 10.1111/1754-9485.13261. Epub 2021 Jun 19.
5
Learning Sequential Information in Task-based fMRI for Synthetic Data Augmentation.
Mach Learn Clin Neuroimaging (2023). 2023 Oct;14312:79-88. doi: 10.1007/978-3-031-44858-4_8. Epub 2023 Oct 1.
6
Brain-inspired semantic data augmentation for multi-style images.
Front Neurorobot. 2024 Mar 26;18:1382406. doi: 10.3389/fnbot.2024.1382406. eCollection 2024.
7
Deep Learning for Neuroimaging Segmentation with a Novel Data Augmentation Strategy.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1516-1519. doi: 10.1109/EMBC44109.2020.9176537.
8
Brain tumor classification for MR images using transfer learning and fine-tuning.
Comput Med Imaging Graph. 2019 Jul;75:34-46. doi: 10.1016/j.compmedimag.2019.05.001. Epub 2019 May 18.
9
A Novel Transfer Learning Approach to Enhance Deep Neural Network Classification of Brain Functional Connectomes.
Front Neurosci. 2018 Jul 24;12:491. doi: 10.3389/fnins.2018.00491. eCollection 2018.
10
Predicting band gaps of MOFs on small data by deep transfer learning with data augmentation strategies.
RSC Adv. 2023 Jun 6;13(25):16952-16962. doi: 10.1039/d3ra02142d. eCollection 2023 Jun 5.

引用本文的文献

1
Machine learning approaches in the therapeutic outcome prediction in major depressive disorder: a systematic review.
Front Psychiatry. 2025 Aug 13;16:1588963. doi: 10.3389/fpsyt.2025.1588963. eCollection 2025.
3
AI-powered integration of multimodal imaging in precision medicine for neuropsychiatric disorders.
Cell Rep Med. 2025 May 20;6(5):102132. doi: 10.1016/j.xcrm.2025.102132.
7
BLENDS: Augmentation of Functional Magnetic Resonance Images for Machine Learning Using Anatomically Constrained Warping.
Brain Connect. 2023 Mar;13(2):80-88. doi: 10.1089/brain.2021.0186. Epub 2022 Nov 4.
8
Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis.
Front Neurosci. 2022 Jul 1;16:866735. doi: 10.3389/fnins.2022.866735. eCollection 2022.
10
Data Augmentation for Brain-Tumor Segmentation: A Review.
Front Comput Neurosci. 2019 Dec 11;13:83. doi: 10.3389/fncom.2019.00083. eCollection 2019.

本文引用的文献

1
Inter-subject Registration of Functional Images: Do We Need Anatomical Images?
Front Neurosci. 2018 Feb 14;12:64. doi: 10.3389/fnins.2018.00064. eCollection 2018.
2
The impact of T1 versus EPI spatial normalization templates for fMRI data analyses.
Hum Brain Mapp. 2017 Nov;38(11):5331-5342. doi: 10.1002/hbm.23737. Epub 2017 Jul 26.
3
Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC): Rationale and design.
J Psychiatr Res. 2016 Jul;78:11-23. doi: 10.1016/j.jpsychires.2016.03.001. Epub 2016 Mar 15.
5
A whole brain fMRI atlas generated via spatially constrained spectral clustering.
Hum Brain Mapp. 2012 Aug;33(8):1914-28. doi: 10.1002/hbm.21333. Epub 2011 Jul 18.
7
A global optimisation method for robust affine registration of brain images.
Med Image Anal. 2001 Jun;5(2):143-56. doi: 10.1016/s1361-8415(01)00036-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验