Suppr超能文献

通过矛盾反馈分析识别并解决移动应用程序功能中的冲突。

Identifying and resolving conflict in mobile application features through contradictory feedback analysis.

作者信息

Gambo Ishaya, Massenon Rhodes, Ogundokun Roseline Oluwaseun, Agarwal Saurabh, Pak Wooguil

机构信息

Department of Computer Science and Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria.

Department of Centre of Real Time Computer Systems, Kaunas University of Technology, Kaunas, Lithuania.

出版信息

Heliyon. 2024 Aug 22;10(17):e36729. doi: 10.1016/j.heliyon.2024.e36729. eCollection 2024 Sep 15.

Abstract

As mobile applications proliferate and user feedback becomes abundant, the task of identifying and resolving conflicts among application features is crucial for delivering satisfactory user experiences. This research, motivated to align application development with user preferences, introduces a novel methodology that leverages advanced Natural Language Processing techniques. The paper showcases the use of sentiment analysis using RoBERTa, topic modeling with Non-negative matrix factorization (NMF), and semantic similarity measures from Sentence-BERT. These techniques enable the identification of contradictory sentiments, the discovery of latent topics representing application features, and the clustering of related feedback instances. The approach detects conflicts by analyzing sentiment distributions within semantically similar clusters, further enhanced by incorporating antonym detection and negation handling. It employs majority voting, weighted ranking based on rating scores, and frequency analysis of feature mentions to resolve conflicts, providing actionable insights for prioritizing requirements. Comprehensive evaluations on large-scale iOS App Store and Google Play Store datasets demonstrate the approach's effectiveness, outperforming baseline methods and existing techniques. The research improves mobile application development and user experiences by aligning features with user preferences and providing interpretable conflict resolution strategies, thereby introducing a novel approach to the field of mobile application development.

摘要

随着移动应用程序的激增以及用户反馈变得丰富,识别和解决应用程序功能之间的冲突对于提供令人满意的用户体验至关重要。这项旨在使应用程序开发与用户偏好保持一致的研究引入了一种利用先进自然语言处理技术的新颖方法。本文展示了使用RoBERTa进行情感分析、使用非负矩阵分解(NMF)进行主题建模以及使用Sentence-BERT进行语义相似性度量。这些技术能够识别矛盾情感、发现代表应用程序功能的潜在主题以及对相关反馈实例进行聚类。该方法通过分析语义相似集群内的情感分布来检测冲突,并通过纳入反义词检测和否定处理进一步增强。它采用多数投票、基于评分的加权排名以及功能提及的频率分析来解决冲突,为需求优先级提供可操作的见解。对大规模iOS应用商店和谷歌Play商店数据集的综合评估证明了该方法的有效性,优于基线方法和现有技术。该研究通过使功能与用户偏好保持一致并提供可解释的冲突解决策略来改进移动应用程序开发和用户体验,从而为移动应用程序开发领域引入了一种新颖方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e467/11400956/2b13aecf367d/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验