Massenon Rhodes, Gambo Ishaya, Ogundokun Roseline Oluwaseun, Ogundepo Ezekiel Adebayo, Srivastava Sweta, Agarwal Saurabh, Pak Wooguil
Department of Computer Science and Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria.
Department of Multimedia Engineering, Kaunas University of Technology, Kaunas, Lithuania.
PeerJ Comput Sci. 2024 Nov 5;10:e2401. doi: 10.7717/peerj-cs.2401. eCollection 2024.
Mobile app reviews are valuable for gaining user feedback on features, usability, and areas for improvement. Analyzing these reviews manually is difficult due to volume and structure, leading to the need for automated techniques. This mapping study categorizes existing approaches for automated and semi-automated tools by analyzing 180 primary studies. Techniques include topic modeling, collocation finding, association rule-based, aspect-based sentiment analysis, frequency-based, word vector-based, and hybrid approaches. The study compares various tools for analyzing mobile app reviews based on performance, scalability, and user-friendliness. Tools like KEFE, MERIT, DIVER, SAFER, SIRA, T-FEX, RE-BERT, and AOBTM outperformed baseline tools like IDEA and SAFE in identifying emerging issues and extracting relevant information. The study also discusses limitations such as manual intervention, linguistic complexities, scalability issues, and interpretability challenges in incorporating user feedback. Overall, this mapping study outlines the current state of feature extraction from app reviews, suggesting future research and innovation opportunities for extracting software requirements from mobile app reviews, thereby improving mobile app development.
移动应用程序评论对于获取用户对功能、可用性和改进领域的反馈非常有价值。由于评论的数量和结构,手动分析这些评论很困难,因此需要自动化技术。这项映射研究通过分析180项主要研究,对用于自动化和半自动化工具的现有方法进行了分类。技术包括主题建模、搭配发现、基于关联规则、基于方面的情感分析、基于频率、基于词向量和混合方法。该研究基于性能、可扩展性和用户友好性,比较了各种用于分析移动应用程序评论的工具。在识别新出现的问题和提取相关信息方面,KEFE、MERIT、DIVER、SAFER、SIRA、T-FEX、RE-BERT和AOBTM等工具的表现优于IDEA和SAFE等基线工具。该研究还讨论了一些局限性,如人工干预、语言复杂性、可扩展性问题以及在纳入用户反馈时的可解释性挑战。总体而言,这项映射研究概述了从应用程序评论中提取特征的当前状态,为从移动应用程序评论中提取软件需求提出了未来的研究和创新机会,从而改进移动应用程序开发。