Suppr超能文献

新冠疫情对风能和太阳能领域的影响以及基于机器学习的能源成本预测

COVID-19 impact on wind and solar energy sector and cost of energy prediction based on machine learning.

作者信息

Ghanbari Motlagh Saheb, Razi Astaraei Fatemeh, Montazeri Mohammad, Bayat Mohsen

机构信息

Department of Renewable Energy Technologies and Energy Resources Engineering, School of Energy Engineering and Sustainable Resources, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.

School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia.

出版信息

Heliyon. 2024 Aug 24;10(17):e36662. doi: 10.1016/j.heliyon.2024.e36662. eCollection 2024 Sep 15.

Abstract

This study examines the impact of the COVID-19 pandemic on renewable energy sectors across seven countries through techno-economic analysis and machine learning (ML). In China, the renewable fraction decreased in grid-connected systems due to 14.6 % higher diesel fuel prices. They reduced grid electricity prices, with Cost of Energy (COE) reductions driven by a 2.8 % inflation decrease and a 3 % discount rate cut. The increase in renewable energy adoption in the USA during the pandemic was driven by decreased initial and operational costs of renewable components, a significant rise in diesel fuel prices, and government policy changes, despite a reduction in renewable energy sell-back prices and rising capital and annual costs due to expanded renewable capacity. Canada noted a shift to standalone systems with 50 % lower PV sell-back prices, 2 % lower WT prices, and a 48 % fuel cost rise, reducing COE except in grid/WT scenarios. Germany managed rising electricity and fuel costs, decreasing COE despite inflation. India expanded standalone HRESs driven by a sevenfold PV capacity increase, lowering COE. Japan saw stable COE with minimal variation. Iran faced economic challenges with a 104 % inflation increase, impacting COE despite a grid-connected COE decrease. Machine learning forecasts suggest that COVID-19 may cause an increase in COE in China and India due to pandemic effects.

摘要

本研究通过技术经济分析和机器学习(ML)考察了新冠疫情对七个国家可再生能源部门的影响。在中国,并网系统中的可再生能源占比下降,原因是柴油价格上涨了14.6%。柴油价格下降了上网电价,能源成本(COE)的降低是由通胀率下降2.8%和贴现率下调3%推动的。在美国,疫情期间可再生能源采用率的提高是由可再生能源组件初始成本和运营成本下降、柴油价格大幅上涨以及政府政策变化推动的,尽管可再生能源回购价格下降,且由于可再生能源装机容量扩大,资本成本和年度成本有所上升。加拿大注意到向独立系统的转变,光伏回购价格降低了50%,风力涡轮机价格降低了2%,燃料成本上涨了48%,除了在并网/风力涡轮机情景中外,能源成本均有所降低。德国应对了不断上涨的电力和燃料成本,尽管存在通胀,但能源成本仍在下降。印度受光伏装机容量增长七倍的推动,扩大了独立式混合可再生能源系统(HRES),降低了能源成本。日本的能源成本保持稳定,变化极小。伊朗面临经济挑战,通胀率上升了104%,尽管并网能源成本有所下降,但仍对能源成本产生了影响。机器学习预测表明,由于疫情影响,新冠疫情可能会导致中国和印度的能源成本上升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b18/11399668/4fddc391c84a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验